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ABSTRACT
Most state-of-the-art automatic speech recognition (ASR) sys-
tems deal with noise in the environment by extracting noise
robust features which are subsequently modelled by a Hid-
den Markov Model (HMM). A limitation of this feature-based
approach is that the influence of noise on the features is dif-
ficult to model explicitly and the HMM is typically over sen-
sitive, dealing poorly with unexpected and severe noise envi-
ronments. An alternative is to model the raw signal directly
which has the potential advantage of allowing noise to be ex-
plicitly modelled. A popular way to model raw speech sig-
nals is to use an Autoregressive (AR) process. AR models
are however very sensitive to variations in the amplitude of
the signal. Our proposed Bayesian Autoregressive Switch-
ing Linear Dynamical System (BAR-SLDS) treats the ob-
served noisy signal as a scaled, clean hidden signal plus noise.
The variance of the noise and signal scaling factor are auto-
matically adapted, enabling the robust identification of scale-
invariant clean signals in the presence of noise.

Index Terms— Autoregressive processes, Gain control,
Bayes procedures, Variational methods, Speech recognition

1. THE SWITCHING AR-HMM

A basic way to model a speech waveform—represented as
a sequence of unidimensional samples v1:T —is by means of
an Autoregressive (AR) process. An AR process models the
sample vt as the sum of a linear combination of the R previous
samples and a random, Gaussian distributed, innovation ηt:

vt =
R∑

r=1

crvt−r + ηt with ηt ∼ N (0, σ2) (1)

whereN (µ, σ2) represents the normal (Gaussian) distribution
with mean µ and variance σ2, and cr are the AR coefficients.
Since an AR process is too simple to model the strong non-
stationarities typically encountered in speech signals, a useful
extension is to consider each sample vt as being generated by
one of S different AR processes. The switching between the
various AR processes is controlled by p(st | st−1), where st is
the index of the AR process used at time t. In the Switching

AR-HMM (SAR-HMM) proposed in [1], the joint distribu-
tion of the sequence of observations v1:T and states s1:T is

p(v1:T , s1:T ) =
T∏

t=1

p(vt | st, vt−R:t−1) p(st | st−1)

where p(s1 | s0) ≡ p(s1) is a specified prior distribution. If
we define ṽt =

[
vt−1 . . . vt−R

]T ≡ vt−R:t−1 and c =[
c1 . . . cR

]T
, then Eq. 1 defines a Gaussian emission dis-

tribution for the current sample vt:

p(vt | st, ṽt) =
1√

2πσ2
st

exp
{
− 1

2σ2
st

(vt − cT
st
ṽt)2

}
where the mean and variance depend on the current state st.
It is desirable to prevent the switch state changing too rapidly
and the speech signal is therefore considered as the concate-
nation of a number of fixed-length segments within which the
state cannot change. This corresponds to the joint distribution

p(v1:T , s1:N ) =
N∏

n=1

p(sn | sn−1)
tn+1−1∏

t=tn

p(vt | sn, ṽt).

Gain Adaptation

Whilst Eq. 1 is invariant under rescaling of the signal v1:T in
the zero-noise limit, in noisy environments, the equation does
not remain invariant. In particular, if the signal is scaled by
a factor α, we would require the innovation variance to scale
by a factor α2. In other words, the ‘gain’ of the sequence, σ,
needs to be appropriately set for each sequence. This problem
is generally addressed by performing Gain Adaptation (GA) [1,
2], replacing in Eq. 1, for each segment n and state s, the vari-
ance σ2 by the segment-state variance σ2

ns which maximises
the likelihood of the observations in the n-th segment, i.e.,

σ2
ns = arg max

σ2
p(vtn:tn+1−1 |σ2).

However, increasing the innovation σ2
ns allows the model to

produce wilder uncontrolled fluctuations in the signal. Ide-
ally, we may wish to have a model which deals with changes
in overall signal level by simply re-scaling the underlying sig-
nal, thus controlling the form of the signal more carefully.



2. THE BAYESIAN AR-SLDS

An alternative to adapting the innovation is to consider the
observed sample vt as a scaled version of a scale-invariant
hidden sample wt plus noise:

vt = bwt + ηVt with ηVt ∼ N (0, σ2
V) (2)

and to model the ‘clean’ hidden sample wt with a switching
AR process:

wt = cT
s w̃t + ηWt (s) with ηWt (s) ∼ N

(
0, σ2

W(s)
)
. (3)

In this manner, no innovation-inflation is required, provided
that the observed signal is simply a scaled, noisy version of
an underlying AR process. For a given observed sequence,
the setting of b and σ2

V is unknown a-priori and needs to be
determined. To solve this problem we treat both parameters
as random variables and introduce a Normal-Gamma prior1

b | ν, s ∼ N
(
µs, ν

−1σ2
s

)
and ν | s ∼ G(αs, βs) (4)

where G(α, β) is the Gamma distribution with shape α and in-
verse scale β. Similarly to the SAR-HMM, we consider a seg-
mental approach where the state, scaling factor and noise vari-
ance are kept constant over a segment. Using ϑn = {bn, νn},
Eqs. 2, 3 and 4 correspond to the distributions p(vt |wt, ϑn),
p(wt |wt−1, sn) and

p(ϑn | sn) = p(bn | νn, sn) p(νn | sn)

respectively. The joint distribution p(v1:T , w1:T , ϑ1:N , s1:N )
defined by this model is equal to

N∏
n=1

p(ϑn | sn) p(sn | sn−1) (5)

×
tn+1−1∏

t=tn

p(vt |wt, ϑn) p(wt |wt−1, sn).

For fixed ϑn the model corresponds to a special case of a
Switching Linear Dynamical System (SLDS) where the un-
derlying dynamics is constrained to be autoregressive. We
will thus refer to the model defined by (5), which includes a
prior over ϑn, as the Bayesian AR-SLDS (BAR-SLDS).

2.1. Parameter Optimisation

Given a set of M training sequences2 {v1
1:T , . . . , vM

1:T }, we
want to find the parameter setting Ψ? which maximises the
total log-likelihood of the training sequences, i.e.,

Ψ? = arg max
Ψ

M∑
m=1

log p(vm
1:T |Ψ) (6)

1To ease notation, we prefer using the inverse variance ν = 1/σ2
V .

2For simplicity, we will assume that they all have the same length.

where Ψ is equal to⋃
s

{
cs, σ

2
W(s), µs, σ

2
s

}
∪

⋃
i,j

{
p(sn = j | sn−1 = j)

}
.

The prior distribution p(s1) is not optimised, but simply set
to one for the first state and zero otherwise. Since our aim
is to train the model on clean signals and to later test it on
noisy data, we do not use a prior on ν during training and set
appropriate value for αs and βs during testing. The likelihood
of a sequence v1:T is

p(v1:T |Ψ) =
∑
s1:N

∫
ϑ1:N
w1:T

p(v1:T , w1:T , ϑ1:N , s1:N |Ψ) (7)

The sum/integral in Eq. 7 makes an explicit solution to Eq. 6
difficult to obtain. The usual approach would then be to use
the Expectation Maximisation (EM) algorithm. However, the
non-linear interaction between wt and ϑn in Eq. 2 renders
computing the required EM posterior distributions intractable.

2.2. Variational Inference

We propose to use a variational approach where the true pos-
terior distribution is approximated by the simpler distribution

q(w1:T , ϑ1:N , s1:N ) = q(w1:T | s1:N ) q(ϑ1:N | s1:N ) q(s1:N )

where the problematic dependency between wt and ϑn has
been removed. By considering the Kullback-Leibler (KL) di-
vergence KL

(
q(w1:T , ϑ1:N , s1:N ) || p(w1:T , ϑ1:N , s1:N |Ψ)

)
,

we obtain the following lower bound on the log-likelihood

log p(v1:T |Ψ) ≥−
〈
log q(w1:T , ϑ1:N , s1:N )

〉
q

(8)

+
〈
log p(v1:T , w1:T , ϑ1:N , s1:N |Ψ)

〉
q

Our aim is therefore to find the q distribution for which the
lower bound is as close as possible to the true log-likelihood.
Differentiating the bound with respect to q(ϑ1:N | s1:N ) yields

q(ϑ1:N , s1:N ) ∝ p(ϑ1:N | s1:N ) p(s1:N )

× exp
{〈

log p(v1:T , w1:T |ϑ1:N , s1:N )
〉

q(w1:T | s1:N )

}
and differentiating with respect to q(w1:T , s1:N ) yields

q(w1:T , s1:N ) ∝ p(w1:t | s1:N ) p(s1:N ) (9)

× exp
{〈

log p(v1:T |w1:T , ϑ1:N , s1:N )
〉

q(ϑ1:N | s1:N )

}
.

2.2.1. Finding q(ϑn | sn)

Since we chose conjugate priors, the posterior distribution has
the same form as the prior, hence

bn | νn, sn ∼ N (µ̂sn , ν−1
n σ̂2

sn
) and νn | sn ∼ G(α̂sn , β̂sn).



After some algebra we obtain3

σ̂2
s = σ2

s

[
1 + σ2

s

∑
t

〈w2
t 〉

]−1

, µ̂s = σ̂2
s

[
µs

σ2
s

+
∑

t

vt〈wt〉

]
and

α̂s = αs +
1
2
Ln, β̂s = βs +

1
2

∑
t

[
v2

t +
µs

σ2
s

− µ̂s

σ̂2
s

]
where the averages are taken with respect to q(wt | sn), Ln =
tn+1 − tn and the sums are carried out from tn to tn+1 − 1.

2.2.2. Finding q(wt | sn) and q(sn)

The right-hand-side of Eq. 9 can be written as

N∏
n=1

p(sn | sn−1)
tn+1−1∏

t=tn

q(vt |wt, sn) p(wt |wt−1, sn) (10)

with log q(vt |wt, sn) given by4〈
log p(vt |wt, ϑn, sn)

〉
=

1
2
〈
log ν

〉
− 1

2
〈
ν(vt − bwt)2

〉
=

1
2
〈
log ν

〉
− 1

2
〈ν〉

(
vt − 〈b〉wt

)2 − 1
2

〈
ν
(
b− 〈b〉

)2〉︸ ︷︷ ︸
σ̂2

sn

w2
t

where the averages are over q(θn | sn). Since, 〈b〉 = µ̂sn

and 〈ν〉 = α̂sn/β̂sn , q(vt |wt, sn) is proportional to

exp

−1
2

[
vt − µ̂snwt

σ̂snwt

]T
[

β̂sn

α̂sn
0

0 1

]−1 [
vt − µ̂sn

wt

σsnwt

] .

This can equivalently be written as a stochastic linear equa-
tion defined on an augmented observation vt [3],

vt = Bsnwt + ηt(sn) with ηt(sn) ∼ N (0,Σsn)

where

vt =
[
vt

0

]
, Bsn =

[
µ̂sn

σ̂sn

]
and Σsn =

[
β̂sn

α̂sn
0

0 1

]
.

By replacing vt by vt in (10) we see that (10) corresponds
to a SLDS for which the posteriors q(wt | sn) and q(sn) can
be computed using any of the numerous available algorithms
found in the literature; see [4] for a review and comparison.
For the experiments presented in this article, we used the
Expectation Correction (EC) algorithm [4] which provides a
fast and accurate procedure for computing the desired poste-
riors. We also used EC to find a first estimate of q(wt | sn)
and q(sn) by running the algorithm on a SLDS where the pa-
rameters where set to their mean value. Variational inference
was then carried out by iteratively applying the forumlae of
Sections 2.2.1 and 2.2.2.

3While the prior parameters depends on s only, the posterior’s depends
on s and n. To ease notation we dropped the n index however.

4Irrelevant constant terms are ignored.

2.3. Parameter Updating

Update formulae for the parameters in Ψ can be obtained by
means of the Variational Bayesian EM Algorithm [5]. This
corresponds to maximising the lower bound given by Eq. 8
with respect to Ψ. Differentiating the lower bound with re-
spect to Ψ and setting the result equal to zero yields

cs =
〈
w̃tw̃T

t

〉−1〈
wtw̃t

〉
, µs = 〈b〉

σ2
W(s) =

1
〈Ln〉

〈
(wt − cT

s w̃t)2
〉
, σ2

s =
1

〈Ln〉
〈
ν(b− µs)2

〉
where the averages must be interpreted as

〈x〉 =
N∑

n=1

q(sn = s)
tn+1−1∑

t=tn

〈x〉q(wt | sn) q(θn | sn)

The updated formula for the transition distribution is

p(sn = j | sn−1 = j) =
∑

n>1 q(sn−1 = i, sn = j)∑
n>1 q(sn−1 = i)

.

3. RESULTS

To test the potential benefit of the proposed scale-invariant
model, we examined the reconstructions of scaled noisy sig-
nals provided by the BAR-SLDS compared with the more
standard gain-adaptation procedure. Clean, non-noisy utter-
ances of the digit ‘one’, were taken from TI-DIGITS [6],
downsampled to 8 kHz. An AR-SLDS model was trained on
these data using the formulae of Section 2.35. As a demon-
stration, a single digit clean utterance of a ‘one’ was taken,
from which a scaled noisy version of the signal was then
formed and corrupted by additive Gaussian noise at SNR 0.
Given this scaled-noisy signal, the posterior q(wt, sn) can be
used to reconstruct the most likely (ML) clean speech sig-
nal. Fig. 1 shows the ML reconstructed clean signal given by
the gain-adapted AR-SLDS and the BAR-SLDS. The BAR-
SLDS does not allow the innovation to change, resulting in
less variability in the underlying signal and a cleaner denois-
ing, particularly at the edges where the signal level is low. On
the other hand, the gain-adapted AR-SLDS provides a rea-
sonable reconstruction but, as a result of the extra innovation
required to explain the change in signal-level, allows the re-
constructed signal too much freedom, particularly in the low
signal level areas, as anticipated.

An interesting comparison is the recognition performance
of the BAR-SLDS compared to the gain-adapted AR-SLDS.
We repeated the above training procedure, fitting an AR-SLDS
model to each of the 11 digits in the TI-DIGITS database.

5Since the model was trained on clean data, no prior was used on ν. The
training was stopped after convergence of the lower bound given by Eq. 8.
The model was composed of 10 states and were using 10 AR coefficients
and a left-right transition matrix. The segment length was of 140 samples.
This corresponds to 1.75 ms at a sampling frequency of 8 kHz.



Fig. 1. Comparison of signal reconstruction. Top: original (left) and corrupted (right) waveform of a ‘one’. Bottom: most
likely reconstruction as given by the gain-adapted AR-SLDS (left) and the BAR-SLDS (right). The dashed lines indicate the
most likely state segmentation. The state segmentation of the clean signal is displayed on the noisy signal as well.

Noise Var. SNR (dB) GA AR-SLDS BAR-SLDS
clean — 97.0% 87.0%
10−5 19.7 94.8% 83.3%
10−4 10.6 84.0% 78.3%
10−3 0.7 61.2% 64.0%

Table 1. Comparison of the recognition accuracy of the Gain-
Adapted AR-SLDS and the Bayesian AR-SLDS for various
levels of noise. The second column gives the approximate
Signal to Noise Ratio (SNR).

For a given test utterance v1:T , recognition was performed by
picking the digit model for which the likelihood of the cor-
responding augmented observation v1:T was the highest. To
evaluate the accuracy of the BAR-SLDS in the presence of
noise, we corrupted the original clean test utterances with ad-
ditive stationary Gaussian noise. To give the model the op-
portunity to remove noise we specified a prior on ν with a
mean of 1 and a large variance. Table 1 compares the recog-
nition accuracy of the proposed Bayesian AR-SLDS with the
Gain-Adapted AR-SLDS proposed in [2]. Although there is
a slight improvement at SNR 0, the BAR-SLDS is otherwise
less accurate than its gain-adapted counterpart. This drop in
performance can be explained by the fact that the BAR-SLDS
does not, as yet, adapt the innovation variance, using only the
scale to allow for changes in the signal. A natural extension of
the BAR-SLDS model is therefore to allow the innovation to
be adapted, as well as the scale. Such a model should have the
benefit that the innovation adaptation will be required only in
those cases that cannot be well explained by simpler rescal-
ings of the underlying clean signal.

4. CONCLUSION & FUTURE WORK

We proposed a Bayesian approach to deal with variations in
the signal amplitude in AR models. As expected, the ap-
proach results in cleaner reconstructions than approaches which

simply adapt innovation variance. Whilst our proposed solu-
tion is quite natural, the model throws up some significant
technical challenges. Our technique is, to our knowledge, the
first variational approximation of the Bayesian SLDS which
retains dependencies between switch and continuous latent
states by exploiting state-of-the-art inference procedures. Such
technical advances will hopefully lead to the wider applica-
tion of SLDS style models in signal processing areas. The
presented model is part of our continuing programme of de-
velopment of models for dealing with noisy signals. In the fu-
ture, we will consider priors on the innovation variance and,
possibly, on the AR coefficients. Another useful extension
would be to use an AR noise model which would allow com-
plex non-stationary noise sources to be considered6.
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