
 
 

E
S

E
A

R
C

H
R

E
P

R
O

R
T

I
D

I
A

P

Rue du Simplon 4

IDIAP Research Institute
1920 Martigny − Switzerland

www.idiap.ch

Tel: +41 27 721 77 11 Email: info@idiap.ch
P.O. Box 592
Fax: +41 27 721 77 12

Switching Linear Dynamical

Systems for Noise Robust

Speech Recognition

Bertrand Mesot & David Barber

IDIAP–RR 06–08

April 2007

to appear in

IEEE Transactions on Audio, Speech and Language Processing



IDIAP Research Report 06–08

Switching Linear Dynamical Systems for Noise

Robust Speech Recognition

Bertrand Mesot & David Barber

April 2007

to appear in

IEEE Transactions on Audio, Speech and Language Processing

Abstract. Real world applications such as hands-free dialling in cars may have to deal with po-
tentially very noisy environments. Existing state-of-the-art solutions to this problem use feature-
based HMMs, with a preprocessing stage to clean the noisy signal. However, the effect that raw
signal noise has on the induced HMM features is poorly understood, and limits the performance
of the HMM system. An alternative to feature-based HMMs is to model the raw signal, which
has the potential advantage that including an explicit noise model is straightforward. Here we
jointly model the dynamics of both the raw speech signal and the noise, using a Switching Linear
Dynamical System (SLDS). The new model was tested on isolated digit utterances corrupted by
Gaussian noise. Contrary to the Autoregressive HMM and its derivatives, which provides a model
of uncorrupted raw speech, the SLDS is comparatively noise robust and also significantly outper-
forms a state-of-the-art feature-based HMM. The computational complexity of the SLDS scales
exponentially with the length of the time series. To counter this we use Expectation Correction
which provides a stable and accurate linear-time approximation for this important class of models,
aiding their further application in acoustic modelling.
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Figure 1: Example of a state segmentation given by a SAR-HMM on the digit “seven” taken from the
TI-DIGITS database. The switch state is shown on top of each segment.

1 Introduction

Current state-of-the-art automatic speech recognition (ASR) systems use the framework of feature-
based Hidden Markov Models (HMMs) [23]. Whilst successful under controlled conditions, this stan-
dard approach is often particularly fragile in the presence of noise [17]. This important issue is
commonly addressed by a preprocessing step which attempts to remove noise, see for example [17],
[7], [12], [25] and [1]. The explicit influence of the noise on the features extracted is poorly understood
and hence incorporating noise models directly into standard feature-based HMM approach would be
difficult. An alternative strategy is to model the raw acoustic signal directly which has the potential
advantage that the noise may also be explicitly modelled.

The early work of Poritz [22] and the more recent Switching Autoregressive HMM (SAR-HMM)
introduced by Ephraim and Roberts [11] have shown that, for isolated digit recognition in clean
conditions, modelling the raw speech signal directly can be a reasonable alternative to feature-based
HMMs. The basic idea behind the SAR-HMM is to model the speech signal as an autoregressive (AR)
process. The intrinsic non-stationarity of the speech signal is dealt with by switching between a finite
set of AR models (with different parameters), see Figure 1. Whilst the SAR-HMM has comparable to
state-of-the-art performance on clean speech, this degrades rapidly under noisy conditions. A possible
explanation for this undesirable behaviour is that the AR process is defined on the (potentially noisy)
observed signal directly; since the model forms predictions on the basis of past observations, the
recognition accuracy of the SAR-HMM drops significantly if the speech signal is corrupted with noise.

To deal with noise, without having to train a new model, we extend the SAR-HMM to include
an explicit noise process whereby the observed signal is viewed as a corrupted version of a clean
hidden signal. This approach naturally leads to a Switching Linear Dynamical System (SLDS) [3]
which represents the signal as a piecewise linear hidden variable model. This approach enhances noise
robustness since the switching AR process is defined on a hidden clean counterpart of the noisy signal.
Here we will make the simple assumption of independent Gaussian noise, although the method may
be extended to include more complex noise processes.

Contrary to the SAR-HMM, where inferring the posterior of the hidden variables can be carried out
using a standard forward-backward algorithm, inference is formally intractable in the SLDS [3], scaling
exponentially with the length of the speech utterance. Arguably, this has been the fundamental rea-
son why the powerful class of SLDS models has found relatively little support amongst the automatic
speech recognition (ASR) community. Two well-known methods for performing approximate inference
in the SLDS are Expectation Propagation (EP) [20] and Generalised Pseudo Bayes (GPB) [3, 21].
They both suffer from limitations which can be relaxed in the case of the SLDS—see [4] for a detailed
explanation. To overcome limitations in existing approximate inference procedures, we recently intro-
duced the Expectation Correction (EC) algorithm [4] which provides a stable, accurate approximation
and scales well to large applications such as ASR.

Previous applications of the SLDS to ASR (see, for example, [10, 26]), have modelled the feature
vectors, and not the raw signal directly. However, work in acoustic modelling [8] suggests that, pro-
vided the difficulties of performing inference and learning can be addressed, the SLDS is a potentially
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powerful tool for modelling the raw acoustic dynamics. In the following section, we rephrase the
SAR-HMM and discuss our ‘correction’ approach for performing inference. This model will subse-
quently be extended to a noise-robust version by construction of a suitable SLDS. We then compare
the SAR-HMM, SLDS and a state-of-the-art feature based noise reduction method for recognising
isolated digits from the TI-DIGITS database [18]. Our contribution, which consists of making a joint

model of both the raw speech and noise signals offers improved noise robustness against the other
methods. Furthermore, the formal computational limitations of exactly implementing the SLDS are
well-addressed using Expectation Correction.

2 The SAR-HMM

One of the simplest models of a continuous time series is an AR process. However, due to the
intrinsic non-stationarity of the speech signal, using a fixed set of AR parameters for the whole
signal is too restrictive. The SAR-HMM [11] therefore introduces a discrete switch variable st, for
each time t, which can be in one of S different states, each corresponding to a particular setting of
the AR parameters. The switch state is assumed Markovian with transition probability p(st | st−1).
Given a particular switch state st, the model assumes that the observed sample vt at time t is a linear
combination of the R preceding observations plus a Gaussian distributed innovation η(st):

vt = −
R

∑

r=1

cr(st) vt−r + ηt with ηt ∼ N (0, σ2
st

) (1)

where η ∼ N (µ, σ2) denotes a Gaussian distributed random variable with mean µ and (co)variance σ2.
Probabilistically, this may be written as1

p(vt | vt−R:t−1, st) ∝ exp

{

−
1

2σ2
st

(

vt +
P

r
cr(st) vt−r

)2
}

The role of the innovation ηt is to model variations in the speech signal from pure autoregression,
and does not model a separate independent additive noise process. In cases where the signal is
indeed inherently noisy, the predictions of the SAR-HMM would depend directly on previous noisy
observations, limiting the suitability of the SAR-HMM in noisy environments. Nevertheless, the SAR-
HMM serves as a baseline raw-signal model, which we extend to include an explicit noise model in
Section 3.

For a sequence of samples v1:T of length T , the SAR-HMM defines the joint distribution

p(s1:T , v1:T ) = p(v1 | s1) p(s1)

T
∏

t=2

p(vt | vt−R:t−1, st) p(st | st−1) (2)

This is a form of Dynamical Bayesian Network (DBN) [14], whose structure is given in Figure 2. The
initial part of the series lacks sufficient observations, and hence we define

p(vt | vt−R:t−1, st) ≡ p(vt | v1:t−1, st) when 1 < t ≤ R.

To ensure that switching between the different AR models is not too rapid, the model is constrained to
stay an integer multiple of K time steps in the same state. To achieve this, the transition probability
in Equation (2) is modified as







p(st | st−1) if t = 0 mod K
1 if t > 0 mod K and st = st−1

0 otherwise
. (3)

1The notation zt1:t2 refers to the sequence zt1 , . . . , zt2 .
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st−1 st st+1

vt−1 vt vt+1

Figure 2: Dynamic Bayesian network representation of the SAR-HMM; st represents the discrete
hidden switch variable and vt is the observed value of the sample at time t.

In practice, the transition probability p(st | st−1) is usually defined such that the switch state number
cannot decrease2. With such a setting, the signal is split into a fixed sequence of segments of variable
length, each modelled by a separate AR process (see Figure 1). Despite the apparent complexity of
the SAR-HMM, the model remains a specially constrained version of an HMM, for which inference is
computationally straightforward, scaling linearly with T [23].

2.1 Gain Adaptation

To cope with variations of the energy contour between utterances and across speakers, the variances σ2
s

of the innovation need to be adapted to each utterance. This procedure, known has Gain Adaptation,
is a key component of the SAR-HMM and considerably improves recognition accuracy. The state
variance σ2

s is thus replaced by the segment-state variance σ2
ns—we refer here to the segmentation

induced by the modified transition probability (3)—which maximises the likelihood of the observed
signal. For segment n and state s, we desire to find the variance which maximises the segment
log-likelihood

log pns(vtn:tn+K) =

tn+K
∑

t=tn

log p(vt | vt−R:t−1, st)
∣

∣

st=s

which is achieved by setting

σ2
ns =

1

K

tn+K
∑

t=tn

(

vt +
P

r
cr(st)vt−r

)2
(4)

where tn is the time point at which the segment n begins3.

2.2 Inference and Learning

Following [11], we evaluate the performance of the SAR-HMM on an isolated digit recognition task
from the TI-DIGITS database [18]. This is achieved by training a separate SAR-HMM for each of the
eleven digits (0–9 and “oh”) using the EM algorithm [9] on a set of training utterances. Recognition
is then performed by associating the utterance to the digit whose model has the highest likelihood.

For a single sequence, given the current setting of the SAR-HMM parameters ϑ, the M-step of EM
maximises the expected complete log-likelihood4 [9]

〈

log p
(

s1:T , v1:T | ϑ̂
)

〉

p(s1:T | v1:T ,ϑ)
(5)

with respect to the new parameter setting ϑ̂. The updated AR coefficients ĉi(s) are given by5

[

ĉ1(s) ĉ2(s) . . . ĉr(s)
]T

= −B−1(s) d(s)

2This is often called a left-right transition matrix in the HMM jargon
3At the end of the waveform, the final segment will generally consist of fewer than K time points, and the upper

bound of the sum in Equation 4 needs to be modified accordingly.
4〈·〉p denotes the average with respect to the distribution p.
5 T denotes the matrix transpose.
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where B(s) and d(s) are given by

[B(s)]ij =
∑

t

vt−i vt−j p(st | v1:T )
∣

∣

st=s

[d(s)]j =
∑

t

vt vt−j p(st | v1:T )
∣

∣

st=s
.

For multiple sequences, the above are summed over all sequences. In order to calculate the expected
complete log-likelihood (5), we need to infer the marginal posterior distributions p(st | v1:T ). Inference
in chain-structured distributions, such as the HMM, is generally achieved by the forward-backward
algorithm [6]. In the SAR-HMM however, the standard backward pass is more complicated because
of the forward dependencies between the observations (Figure 2). We therefore consider a different
scheme based on a correction smoother [24] where the backward pass calculates directly the pos-
terior p(st | v1:T ) by correcting the result of the forward pass. This method forms the basis of our
Expectation Correction method used for the more complex SLDS, and hence serves as a useful intro-
duction.

2.2.1 Forward Pass

The goal of the forward pass is to calculate, for each time step t, the ‘filtered’ posterior p(st | v1:t) which
contains all the information coming from the past. By using the structure of the distribution (2), if
the previous filtered posterior p(st−1 | v1:t−1) is known, then the current posterior can be found by
recursion:

p(st | v1:t) ∝ p(st, vt|v1:t−1)

=
∑

st−1

p(vt | vt−R:t−1, st) p(st | st−1) p(st−1 | v1:t−1). (6)

Starting with the initial posterior p(s1 | v1) ∝ p(v1 | s1) p(s1), the filtered posterior at each time step
can then be found by applying Equation 6 iteratively.

2.2.2 Backward Pass

The goal of the backward pass is to calculate, for each time step t, the smoothed posterior p(st | v1:T ).
A recursion for p(st | v1:T ) in terms of p(st+1 | v1:T ) can be derived by considering an equation similar
to that used by the Rauch-Tung-Striebel (RTS) correction smoother for the Kalman Filter [24]:

p(st | v1:T ) =
∑

st+1

p(st | st+1, v1:T ) p(st+1 | v1:T )

=
∑

st+1

p(st | st+1, v1:t) p(st+1 | v1:T ) (7)

∝
∑

st+1

p(st+1 | st) p(st | v1:t) p(st+1 | v1:T ) (8)

where the second and third terms in (8) are the filtered posterior at time t and the smoothed posterior
at time t + 1 respectively. In (7), we used the fact that, in chain-structured graphs like the one of
Figure 2, st is independent of any future information vt+1:T if the state of st+1 is known. The
iteration (8) is initialised with the last filtered posterior p(sT | v1:T ). Furthermore, since the transition
distribution p(st | st−1) is replaced by (3), the smoothed posterior remains the same over a segment
and therefore only needs to be computed at segment boundaries.
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st−1 st st+1

ht−1 ht ht+1

vt−1 vt vt+1

Figure 3: Dynamic Bayesian network representing the AR-SLDS: st represents the discrete hidden
switch variable, ht the continuous hidden clean signal and vt is the observed value of the sample at
time t.

2.2.3 Likelihood

The likelihood of an observed sequence v1:T can be calculated using the recursion

p(v1:t) = p(v1:t−1) p(vt | v1:t−1)

= p(v1:t−1)
∑

st

p(st, vt | v1:t−1) (9)

where p(st, vt | v1:t−1) is given by the right hand side (rhs) of Equation 6 and p(v1:t−1) is the previous
partial likelihood. The recursion (9) is initialised with p(v1) =

∑

s1
p(v1 | s1) p(s1).

3 The AR-SLDS

The SAR-HMM is a useful model of clean raw-speech, but is fragile in the presence of noise. To
overcome some of the limitations of the SAR-HMM, we introduce the AR-SLDS which considers the
observed speech sample vt as a noisy version of a clean hidden sample. The clean one-dimensional
signal is obtained from the projection of a higher dimensional vector ht, whose dynamics follows a
stochastic linear recursion, parameterised by st

6:

ht = A(st)ht−1 + ηH

t with ηH

t ∼ N
(

0,ΣH(st)
)

(10)

Here A(st) is the transition matrix which characterises the dynamics of the hidden variable, under
state st. The ‘innovation’ (or hidden noise) ηH

t models variations from pure linear state dynamics.
Equation 10 defines a continuous hidden transition distribution p(ht |ht−1, st) proportional to

exp

{

−
1

2

(

ht − A(st)ht−1

)T

Σ−1
H

(st)
(

ht − A(st)ht−1

)

}

.

The observation is given by projecting the vector ht to a scalar vt:

vt = Bht + ηV

t with ηV

t ∼ N (0, σ2
V
). (11)

Here the noise ηV

t models independent additive Gaussian white noise on the clean signal Bht. Unlike
the innovation ηt in the SAR-HMM (Equation 1), ηV

t models noise on the signal, independently of the
dynamics of the clean signal. Equation 11 corresponds to the Gaussian distribution

p(vt |ht) ∝ exp

{

−
1

2σ2
V

(

vt − Bht

)2
}

.

6In order to keep the notation simple, we use H and V to indicate if the variable/parameter is associated with a
hidden or visible variable respectively.
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For a sequence of samples v1:T of length T , the AR-SLDS defines the joint distribution

p(h1:T , s1:T , v1:T ) = p(v1 |h1) p(h1 | s1) p(s1)
T

∏

t=2

p(vt |ht) p(ht |ht−1, st) p(st | st−1) (12)

where p(s1) and p(h1 | s1) are prior distributions over the discrete and continuous variables and
p(st | st−1) is the state transition distribution. The model forms a first order Markovian dynamics
on the hidden space, whose graphical structure is depicted in Figure 3. The SLDS models both the
dynamics of a clean underlying signal, plus independent additive noise. It is this joint signal plus
noise modelling which we hope will bring benefit over the simpler SAR-HMM.

The model presented so far is generic and it would be interesting to see what potential performance
it has on ASR. However, to demonstrate possible improvement in noise robustness using the SLDS
over the SAR-HMM, we construct a specific SLDS which, when σ2

V
≡ 0, mimics the SAR-HMM. To

do this we set A(st) to be an R × R matrix where the first row contains the AR coefficients −cr(st)
and the rest is a shifted down identity matrix. For example, in the case of a third order AR process,
we would have

A(st) =





−c1(st) −c2(st) −c3(st)
1 0 0
0 1 0



 .

The 1 × R projection matrix B extracts the first component of ht:

B =
[

1 0 . . . 0
]

.

Since the SAR-HMM innovation only influences the most recent observation, the hidden covariance
matrix ΣH(s) must be set such that all elements are zero, except the top-left most which is set to σ2

s ,
i.e., the innovation variance used in Equation 1. In this way, the model exactly mimics the SAR-HMM
if σ2

V
≡ 0. For σ2

V
> 0, the model is effectively an SAR-HMM model of clean speech, plus a model

of additive Gaussian white noise, and should thus provide a level of noise robustness. As for the
SAR-HMM, we use the likelihood of an utterance to perform classification. Since Gain Adaptation is
a key component of a successful SAR-HMM system, we include this also for the SLDS, as explained
below.

3.1 Gain Adaptation

We perform gain adaptation in the AR-SLDS by adjusting the innovation covariance ΣH(s) to each
utterance. Following the same approach as for the SAR-HMM, we replace the hidden covariance ΣH(s)
by the segment-state hidden covariance matrix Σns

H
that maximises the likelihood of the observed

sequence. An explicit formula for Σns
H

cannot be obtained; we use EM instead to estimate that
quantity. Given the current estimate of Σns

H
, the M-step of EM maximises the expected complete

log-likelihood
〈

log p
(

s1:T , h1:T , v1:T | Σ̂ns
H

)

〉

p(s1:T ,h1:T | v1:T ,Σns

H
)

with respect to the new parameters Σ̂ns
H

. This yields the update

Σ̂ns
H

=
1

K

tn+K
∑

t=tn

〈

(

ht − A(s)ht−1

)(

ht − A(s)ht−1

)T
〉

(13)

where the average is taken with respect to the posterior p(ht−1, ht | st, v1:T ,Σns
H

)|st=s. The posterior
distribution required by Equations 13 is obtained by inference on the distribution (12), conditioned
on v1:T . Contrary to the SAR-HMM, where the posterior distribution p(st | v1:T ) can be computed
exactly, inferring p(st, ht | v1:T ) in a SLDS is O(ST ), and therefore requires approximations [3]. To ad-
dress this we recently developed the Expectation Correction algorithm [4] which is a generic algorithm
for approximate inference in SLDSs, as briefly described in the next section.
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3.2 Inference using Expectation Correction

The EC algorithm approximates the smoothed posteriors p(st, ht | v1:T ) in two steps: the forward pass
first finds the filtered posteriors p(st, ht | v1:t) and the backward pass corrects the filtered estimate to
form the smoothed posterior p(st, ht | v1:T ). Both passes are linear in T , compared with the O(ST )
complexity of exact inference.

Without loss of generality, we may represent the filtered and smoothed posteriors as a product of
a continuous and a discrete distribution:

p(st, ht | v1:t) = p(ht | st, v1:t) p(st | v1:t)

p(st, ht | v1:T ) = p(ht | st, v1:T ) p(st | v1:T ).

Space here is too limited to provide more than a cursory explanation of the algorithm and the reader
is referred to [4] for further details. The procedure presented below is not specific to the AR-SLDS,
whose particular structure allows some computational savings, as described in Appendix A.

3.2.1 Forward Pass

If we denote xt = {ht, st} as the hidden variables, the generic form of the forward recursion is

p(xt | v1:t) ∝ p(vt |xt)

∫

xt−1

p(xt |xt−1) p(xt−1 | v1:t−1)

Using the structure of the DBN of Figure 3, the rhs can be expanded as

∑

st−1

p(st | st−1) p(st−1 | v1:t−1) p(vt |ht)

∫

ht−1

p(ht |ht−1, st) p(ht−1 | st−1, v1:t−1).

The filtered posterior at time t is therefore a mixture of Gaussians of the form

∑

st−1

p(ht | st−1, st, v1:t) p(st−1, st | v1:t) (14)

with

p(st−1, st | v1:t) = p(vt | st, v1:t−1) p(st−1 | v1:t−1) (15)

p(ht | st−1, st, v1:t) = p(vt |ht)
〈

p(ht |ht−1, st)
〉

(16)

where the average is taken with respect to the filtered posterior p(ht−1 | st−1, v1:t−1) and p(vt | st, v1:t−1)
is obtained by integrating the rhs of Equation 16 over ht. The recursion is initialised with

p(h1 | s1, v1) ∝ p(v1 |h1) p(h1 | s1) and p(s1 | v1) ∝

∫

h1

p(v1 |h1) p(h1|s1) p(s1)

where p(s1) is the discrete prior, and p(h1 | s1) is the indexed Gaussian prior on the continuous hidden
state. The number of mixture components required to represent the filtered posterior exactly is
multiplied by S at each time step and thus grows exponentially with t. A simple remedy is to collapse
the mixture obtained at each time step to a mixture with fewer components. This corresponds to the
so-called Gaussian Sum Approximation [2] which is a form of Assumed Density Filtering [20]. For
the experiments presented in this paper we simply collapsed the mixture to a single Gaussian, which
proved sufficiently accurate.



IDIAP–RR 06–08 8

3.2.2 Backward Pass

The backward recursion is similar to that used in the RTS method. It has the generic form

p(xt | v1:T ) =

∫

xt+1

p(xt |xt+1, v1:t) p(xt+1 | v1:T ).

Note that the first factor is independent of the future observations vt+1:T because it is conditioned
on xt+1. Expanding the rhs yields

p(ht, st | v1:T ) =
∑

st+1

p(st+1 | v1:T )
〈

p(ht, st |ht+1, st+1, v1:t)
〉

(17)

where the average is taken with respect to the smoothed posterior p(ht+1 | st+1, v1:T ). Without loss
of generality the average in Equation 17 can be written as

〈

p(ht |ht+1, st, st+1, v1:t) p(st |ht+1, st+1, v1:t)
〉

.

This is difficult to evaluate because of the dependency between ht+1 and st+1. In EC, the average is
approximated by

〈

p(ht |ht+1, st, st+1, v1:t)
〉 〈

p(st |ht+1, st+1, v1:t)
〉

. (18)

The first factor corresponds to the continuous part of the smoothed posterior distribution. Its form
is the same as in the RTS method and can be evaluated exactly by conditioning on ht+1 the joint
distribution

p(ht, ht+1 | st, st+1, v1:t) = p(ht+1 |ht, st+1) p(ht | st, v1:t) (19)

which can be obtained by forward propagation.
The second factor in (18) is still difficult to evaluate exactly. The simplest approach within EC is

to approximate it by
p(st |ht+1, st+1, v1:t)

∣

∣

ht+1=〈ht+1 | st+1,v1:T 〉
(20)

where 〈ht+1 | st+1, v1:T 〉 is the mean of ht+1 with respect to the smoothed posterior p(ht+1 | st+1, v1:T ).
More sophisticated approximation schemes may be applied, but practically the proposed one has
proven to be accurate enough for the application considered here. Note also that this approximation
is less severe than that used in the GPB backward pass, where

〈

p(st |ht+1, st+1, v1:t)
〉

≈ p(st | st+1, v1:t).

This approximation, proposed by Kim [15, 16], depends only on the filtered posterior and does not
include any information coming from the continuous variable ht+1. Finally, Expression 20 can be
evaluated by considering

p(st, ht+1 | st+1, v1:t) ∝ p(ht+1 | st, st+1, v1:t) p(st+1 | st) p(st | v1:t)

where p(ht+1 | st, st+1, v1:t) is obtained by marginalising Equation 19 over ht.
In summary, the smoothed posterior, as given by Equation 17, is a mixture of Gaussians of the

form
∑

st+1

p(ht | st, st+1, v1:T ) p(st, st+1 | v1:T ). (21)

In its most generic form, EC approximates each term by

p(st, st+1 | v1:T ) ≈ p(st+1 | v1:T )
〈

p(st |ht+1, st+1, v1:t)
〉

p(ht | st, st+1, v1:T ) ≈
〈

p(ht |ht+1, st, st+1, v1:t)
〉

where the average is taken with respect to the smoothed posterior p(ht+1 | st+1, v1:T ). As in the forward
pass, the number of mixture components is multiplied by S at each iteration. In EC, we therefore
collapse the mixture (21) to a mixture with fewer components. For the experiments presented in this
paper, collapsing to a single Gaussian proved to be sufficient.
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4 Training & Evaluation

4.1 The SAR-HMM

Following [11], we trained a separate SAR-HMM model for each of the eleven digits (0–9 and “oh”)
from the TI-DIGITS database [18]. The training set for each digit was composed of 110 single digit
utterances downsampled to 8 kHz, each one pronounced by a male speaker. Each SAR-HMM was
composed of ten states with a left-right transition matrix. Each state was associated with a 10th-
order AR process and the model was constrained to stay an integer multiple of K = 140 time steps
(0.0175 seconds) in the same state. The number of parameters to be trained was therefore: 10 AR
coefficients per state and 9 transition probabilities. This makes a total of 109 free parameters, without
counting the innovation variance which is implicitly obtained from each utterance.

For each training utterance the adapted gain σ2
ns associated to each pair of segment and state was

computed according to Equation 4. After this procedure had been carried out for each utterance of
the training set, the parameters of the model—i.e, the transition matrix and the AR coefficients of
each state—were updated and a new iteration took place if:

∑

m

(

log p(vm
1:Tm

| ϑ̂) − log p(vm
1:Tm

|ϑ)
)

∑

m log p(vm
1:Tm

| ϑ̂)
> 10−7

where vm
1:Tm

represents the m-th utterance and ϑ and ϑ̂ the old and new sets of SAR-HMM parameters,
respectively. The model was then evaluated on a test set composed of 112 utterances of each of the
eleven digits, each pronounced by a different male speaker from that used in the training set. For
each test utterance and for each model, the adapted gain σ2

ns was computed and used to evaluate
the likelihood of the sequence given the model. The recognition was then performed by selecting the
model with the highest likelihood.

4.2 The AR-SLDS

The AR-SLDS was not trained directly. Instead its parameters were simply set to the same value
as in the corresponding trained SAR-HMM, i.e., the AR coefficients cr(s) are copied into the first
row of the matrix A(s) and the same state transition distribution p(st | st−1) is used. The model was
then tested on the same test set as used for the SAR-HMM. The innovation covariance was iteratively
adapted using Equations 13 until the relative likelihood difference between two consecutive iterations
was less than 10−7. To seed recursion 13, an initial estimate of Σns

H
was obtained from the training

set by using the SAR-HMM maximum likelihood estimate of σ2
s for each state s

σ2
s =

∑

m,t p(st = s | vm
1:Tm

)
(

vt +
P

r
cr(s)vt−r

)2

∑

m,t p(st = s | vm
1:Tm

)
.

The initial Σns
H

was defined to have all elements equal to zero except for the top-left element which
was set to σ2

s , thus disregarding the segment number n. Compared to the SAR-HMM, the AR-SLDS
has one additional parameter, the noise variance σ2

V
.

The complexity of the EC forward and backward pass is O(SR2T ) and O(SR3T ) respectively. The
backward pass is slightly more complex because, at each segment boundary, three matrix inversions
are required and the complexity of the matrix multiplications cannot be reduced as in the forward
pass. The total number of bytes required by the forward pass is 4 ·S

(

T +TR + ⌊T/K⌋R2
)

. The total

number of bytes used by the backward pass is 4 · S
(

⌊T/K⌋ + 2TR + T (2R)2
)

. As an example, the
total amount of space required to evaluate a sequence of 7000 samples with a ten state 10th-order
AR-SLDS is about 300MB and the time required to evaluate all of the 1232 digits of the test set with
only one model is around 3 days on a 3.2GHz Pentium 4 machine.
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“one” at SNR 0.7 dB “five” at SNR 10.6 dB

Figure 4: Two examples of signal reconstruction using the AR-SLDS; (top) original clean signal
taken from the TI-DIGITS database, (middle) noisy signal, i.e., clean signal artificially corrupted by
Gaussian noise, (bottom) reconstructed clean signal. The dashed lines and the numbers show the
most-likely state segmentation.

5 Examples of Signal Reconstruction

In order to demonstrate the noise robustness capabilities of the AR-SLDS, we plotted in Figure 4:
(top) the original raw speech signal taken from the TI-DIGITS database and down-sampled to 8 kHz,
(middle) its artificial Gaussian white noise corrupted version and (bottom) the corresponding re-
constructed clean speech signal of the AR-SLDS. The latter is obtained by taking, for each time
step, the mean 〈ht〉 of the smoothed posterior p(ht | s

′
t, v1:T ) where the state segmentation is given

by s′t = arg maxst
p(st | v1:T ). The clean reconstructed sample at time t is then given by 〈ht〉. Figure 4

also shows, for each signal, the corresponding state segmentation given by the AR-SLDS.
In Figure 4 both noise-corrupted signals are correctly recognised by our SLDS procedure. This is

encouraging since when the SNR is close to 0 dB, the shape of the original clean speech signal has
almost disappeared and any de-noising method which does not consider the dynamics of the clean
signal will most likely fail. In this example, the reconstructed signal is reminiscent of a digit “one”;
for the higher SNR level on the right of Figure 4 the reconstruction is much closer to the original
clean signal. The noisy “one” shown on the left side of Figure 4 has a likelihood of 2.0 when evaluated
with the AR-SLDS corresponding to “one” and a likelihood of 1.9995 with the model corresponding
to “oh”. This demonstrates that, under extremely noisy conditions, an accurate approximation of the
likelihood is important, since many digit models are likely to have generated such a noisy example.
In both examples shown in Figure 4, the models stay in the second state for too long; this problem
arises because the dynamics of the initial section of the speech signal is difficult to distinguish from
silence. The performance could therefore be improved by explicitly modelling the state duration [8].

6 Results

For the TI-DIGITS database, we compared the noise robustness of the SAR-HMM against the AR-
SLDS and a state-of-the-art de-noising method using a frequency domain feature-based HMM. Each
test utterance was corrupted with additive noise independently sampled from a Gaussian with zero
mean and covariance σ2.
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Noise Variance SNR (dB) HMM SAR-HMM AR-SLDS

0 26.5 100.0% 97.0% 96.8%
10−7 26.3 100.0% 79.8% 96.8%
10−6 25.1 ⋆90.9% 56.7% 96.4%
10−5 19.7 86.4% 22.2% 94.8%
10−4 10.6 59.1% 9.7% 84.0%
10−3 0.7 9.1% 9.1% 61.2%

Table 1: Comparison of the recognition accuracy of three models when the test utterances are cor-
rupted by various levels of Gaussian noise. ⋆This performance is worse than without unsupervised
spectral subtraction, which gives 95.5%.

The features for the HMM were computed using Unsupervised Spectral Subtraction (USS) [17],
thereby providing filtered features to the HMM recogniser. The setup used for the feature-based
HMM was the same as that used to obtain the baseline performance on the AURORA task [13],
namely 18 states, left-right transition matrix, a mixture of three Gaussians per state and 39 MFCC
features, including first and second temporal derivatives as well as energy. The number of parameter to
be trained was therefore: 18×3×39 = 2106 mean values (one for each MFCC feature), 2106 variances
(one for each MFCC feature) and 17 transition probabilities. This makes a total of 4229 parameters.
For the SAR-HMM and the AR-SLDS, no prior filtering was applied. Each AR-SLDS digit model was
explicitly tested with a range of noise variances and recognition was performed by picking the model
with the highest likelihood.

Table 1 shows the recognition accuracies obtained by the different models for various levels of
noise. As expected, the performance of the SAR-HMM rapidly decreases with noise. Thanks to USS,
the feature-based HMM is able to maintain a recognition accuracy above 90% as long as the SNR is
higher than 20 dB, below which the noise is too strong to be filtered out accurately without considering
the dynamics of the clean signal. In contrast, the AR-SLDS has a recognition accuracy of 61.2% with
a SNR close to 0 dB, whilst the performance of the other two methods is equivalent to random
guessing (9.1%).

If all possible noise effects can be enumerated a priori – for example, if it is known that noise of
variance either σ2

1 or σ2
2 is added to the signal – then an alternative would be to train the SAR-HMM

on noisy versions of the clean utterances. Whilst of limited practical value7, we carried out such
an experiment as a comparative method of improving noise robustness in the SAR-HMM. To our
surprise, the performance of the SAR-HMM trained with the same level of noise as that for which
it was tested on, gave better results than the AR-SLDS initialised with the SAR-HMM trained on
clean. As can be seen in Table 2, at SNR 0dB, the accuracy is more than 10% higher than that of
the AR-SLDS and significantly better otherwise. A possible explanation is that adding stationary
Gaussian noise on the samples has a regularising effect which prevents overfitting. Since noise makes
the signal less predictable, the AR coefficients obtained after training on noisy utterances are therefore
more conservative than those obtained on clean, and tend to model the part of the signal which is
the more stable. This explanation is plausible since the performance with a noise variance of 10−6 is
actually better than with 10−7 and on clean speech. A Bayesian alternative to the SAR-HMM [19]
may therefore be worthwhile considering.

7 Discussion and Conclusion

Our main goal was to investigate how much improvement we could expect by embedding a SAR-
HMM trained on clean signals into a SLDS, and to present the underlying theoretical aspects. We

7In more practical scenarios the noise distributions are generally not stationary, nor even from a finite fixed set of
possible distributions.



IDIAP–RR 06–08 12

Noise Variance 10−7 10−6 10−5 10−4 10−3

Accuracy 97.2 97.4 96.3 92.53 74.2

Table 2: Recognition accuracy of the SAR-HMM trained and tested with the same noise variance.

concentrated on stationary noise, but non-stationary sources of noise may also be modelled, such as
found in the AURORA [13] database. For example, we could model an observed noisy signal as the
superposition of a clean hidden signal, modelled by an AR-SLDS, and noise, modelled by a Bayesian

Kalman Filter [5]. The Bayesian Kalman filter is particularly useful in this situation because it allows
the parameters of the noise model to be adapted automatically. This is important since the noise
dynamics in practice would not be known a priori.

In summary, modelling signals as an explicit combination of speech and noise signals may be
a viable route to noise reduction in speech recognition. Whilst we concentrated here on isolated
digit recognition, it would be interesting to extend the approach to filter more generic speech units
embedded in noisy signals, which then could be used for example as a preprocessing step in standard
speech recognition models.

8 Code Availability

The code as well as the complete setup that we used during the preparation of this paper are available
at the following address: http://www.idiap.ch/∼bmesot/arslds.

A EC applied to the AR-SLDS

EC as described in Section 3.2 does not take into account the particular structure of the AR-SLDS,
in particular the segmentation implied by the modified discrete transition probability (3). Inside a
segment, the state does not change, and the sum over st−1 in Equation 14 therefore disappears and
one is left with the simpler expression

p(st, ht | v1:t) ∝

∫

ht−1

p(vt, st, ht, st−1, ht−1 | v1:t−1)

which corresponds to a Kalman Filter. A nice property of the Kalman filter is that the variance of ht

does not depend on the observations v1:t and quickly converges to a fixed value [3]. This is useful in
practice since the filtered covariance matrices used during the backward pass, which otherwise must be
stored for each time-step, can be replaced by their segment converged approximations. Furthermore,
conditioning (19) on ht+1 defines a reversal of the dynamics which requires a matrix inversion (see [4]
for details). However, the inversion depends only on the filtered covariance matrix and on st and st+1.
Using the same filtered covariance matrix over a whole segment, and the left-right structure of the
transition matrix, this can be reduced to 3S inversions per segment.

B SNR Computation

The SNRs shown in Table 1 have been computed using the following formula:

10 log10

(

σ2
s

σ2
n + σ2

)

where σ2
s , σ2

n and σ2 are the variance of the clean speech signal, clean noise and additional noise
respectively. σ2

s was computed by retaining, for each utterance of the test set, only the samples whose
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energy was higher than 10% of the maximal energy. Those samples were assumed to belong to the
speech signal. The remaining were used for computing σ2

n.
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