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Abstract. This paper proposes a simple, computationally efficient 2-mixture model approach to

discrimination between speech and background noise. It is directly derived from observations on

real data, and can be used in a fully unsupervised manner, with the EM algorithm. A first appli-

cation to sector-based, joint audio source localization and detection, using multiple microphones,

confirms that the model can provide major enhancement. A second application to the single

channel speech recognition task in a noisy environment yields major improvement on stationary

noise and promising results on non-stationary noise.
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1 Introduction

Robustness to various noise conditions is a key feature for speech processing algorithms to be turned
into versatile, real-world applications. Most often, two exclusive directions are followed: either enhance
the speech signal itself by ideally filtering out the noise [1, 2, 3], or change the way acoustic features
are extracted from the signal [4, 5]. This paper presents an intermediary approach that enhances
the feature extraction process at a level as close as possible to the original signal : at the magnitude
spectrogram level, i.e. in time-frequency plane (TF). It relies on a 2-mixture model and unsupervised
EM fitting [6] on observed data.

The underlying motivation of this approach is to rely on the estimated posterior probability of
observing activity at a given (time, frequency) point of the spectrogram, so that ultimately the
magnitude spectrogram can be replaced by a “posteriorgram”. In spirit, the proposed approach can
be related to TRAP-TANDEM [7] and further developments [8], although the probabilistic modeling
is made here at a much lower-level type of data: the magnitude spectrogram itself.

Enhancing the spectrogram itself, based on probabilistic assumptions [9] has received much atten-
tion recently [2, 3]. In order to build a probabilistic model, at least two distributions are needed: one
for background noise, and one for speech. A very reasonable model for background noise on silent parts
of the TF plane is a white Gaussian assumption for real and imaginary parts, which translates into
assuming a Rayleigh probability density function (pdf) in magnitude domain [10]. However, modeling
of the speech part is much more complicate as such an assumption does not hold anymore. Super-
gaussian models such as the Laplace pdf may be needed [2] for a better fit on real data. Derivation
of the magnitude pdf of speech is then difficult, and still subject to research [11].

On the contrary, this paper proposes to restrict the problem to modeling of large magnitudes of
speech only, implicitely attempting to drop the noisy part of the TF plane. In spirit, our approach
is close to the missing data approach [12]. The main difference is that instead of a binary mask and
the concepts of reliability and unreliability, the approach proposed here relies on the concepts of noise
and activity, and aims at producing a “posteriorgram”, which can be seen as a soft mask.

Intuitively, the main idea is that low speech magnitudes cannot be distinguished from background
noise, being intrisically regions of low Signal-to-Noise Ratio (SNR). We therefore define activity in a
negative way: activity is defined as what is not background noise1. The well-justified background noise
Rayleigh model is therefore completed with an ad-hoc pdf for activity, that models “large” magnitudes
only. “Large” is defined w.r.t. the Rayleigh model itself, and the complete modeling process is
fully unsupervised. Two applications are considered: multimicrophone-based, enhanced sector-based
speaker detection and localization, building on [14], and single channel noise-robust ASR. Both share
the same generative model for the observed magnitude in TF plane. In the localization case, this
model permits to detect and discard parts of the TF plane where the spatial point source model
assumption does not hold. In the ASR case, the magnitude spectrogram is filtered at a reasonable
cost, so that only speech that can be distinguished from background noise is retained.

The rest of this paper is organized as follows: Sect. 3 introduces the probabilistic model, motivating
it with observations on real data. Sect. 4 reports detection/localization results on real meeting room
data, and Sect. 5 reports ASR result on noisy telephone speech. Finally, Sect. 6 concludes.

2 Notations

Classical frame-based Fourier analysis is used. Both time t and frequency f are discretized into
samples and N frequency bins (narrowbands), respectively.

• xt is the captured signal,
• yt is the preemphasized signal (in practice yt = xt − 0.97 · xt−1),
• Fy

f,t is the Digital Fourier Transform (DFT) of a windowed signal [yt−N+1 . . . yt]
T

(using Hamming window),

1The authors are largely indebted to [13] for the “negative” and “structural” way of thinking.
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Figure 1: Observations on real meeting room data [15] (pre-emphasized waveform y(t)). (a),(c):
histograms, (b),(d): phase plots.

• [·]T denotes the transposition operator,
• mf,t = |Fy

f,t| is the magnitude in TF plane,
• y and m designate realizations of random variables Y and M .

3 Proposed 2-Mixture Generative Model

In this section, the commonly used Rayleigh silence model is justified on real data, and completed
with an ad-hoc “activity” model. The main difference with existing, related models such as in [9, 2, 3],
is that we do not address the complete probabilistic modeling of speech activity, but limit ourselves
to large magnitudes only.

3.1 Observations on Real Waveforms

Simple observations on silence periods of a pre-emphasized waveform y(t) and its covariance matrix, as
partially illustrated by Figs. 1a and 1b, show that modeling {Yt} as a i.i.d, zero-centered Gaussian pro-
cesses is very reasonable. In particular, we computed the correlation matrix of several pre-emphasized
silence signals [y1 . . . yN ]T and observed that the correlation coefficients on the diagonal are at least
one order of magnitude larger than others. Correlation and independence are equivalent for Gaussian
random variables.

Formally, the time-domain model for silence can be written in the following manner:







Xt = Xt−1 + Yt

Yt ∼ N (0, σsil)
{Yt} i.i.d.

(1)

where σsil is a parameter that does not depend on time t. Under such assumption, the real and
imaginary part of the DFT are independent Gaussian distributed variables, as shown in Annex A.
Note that this derivation is exact and does not rely on asymptotical considerations such as the central
limit theorem. Thus, the magnitude Mf,t has a Rayleigh pdf [10]. This type of assumption is used in
several existing works [2, 11].

On the other hand, speech waveforms are clearly not Gaussian distributed, and not i.i.d., as shown
by Fig. 1c and 1d. As mentioned previously, finding a fully-justified pdf for speech magnitude is still
an open research subject. Hence, in Sect. 3.2 we propose to model large magnitudes of speech only.

3.2 Proposed Mixture Model

The proposed pdf for M is:

f (m)
def
= PI · fI(m) + PA · fA(m), (2)
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where PI and PA are the priors for “silence” and “activity”, respectively. From Eq 1 and Annex A,
fI is the Rayleigh pdf:

fI(m)
def
=

m

σ2
I

e
− m2

2σ2
I , (3)

and fA is a pdf that models magnitudes m > δA, where δA is a threshold defined w.r.t. fI. As a
starting point, in this paper we use δA = σI, which is the mode of the Rayleigh pdf. The reasoning is
that values below the mode of the Rayleigh fI can safely be assumed to be noise.

Moreover, we constrain fA to fulfill two practical constraints. First, the derivative f ′
A(m) of the

chosen “activity” pdf should not be zero when m is just above δA, overwise the threshold δA will loose
its meaning, as it may be set arbitrarily low. Second, the decay of fA(m) when m tends towards
infinity should be lower than the decay of the Rayleigh, in order to make sure that fA will capture
data with large magnitudes, and not fI. A pdf that fulfills the two criterions above is a “shifted
Erlang” pdf with h=2 (the Erlang pdf belongs to the Gamma family [10]):

fA(m)
def
= 1m>δA

· λ2
A · (m − δA) · e−λA(m−δA), (4)

where 1m>δA
is equal to 1 if m > δA, and zero otherwise. Note the implicit stationarity assumption:

the 4 parameters Λ = {PI, σI, PA, λA} are assumed independent of t. Independence of f is also assumed
; it is justified by the pre-emphasis, which whitens the spectrum.

EM training of Λ [6]: Both “E” and “M” steps involve simple mathematical expressions. The
“M” step can be implemented by updating σI first, and then using the data above δA = σI to update
λA. The cost can be further reduced by an histogram-based implementation.

Application: given an observed magnitude value mf,t, and trained parameters Λ, the posterior
probability of the activity is estimated as:

P (act |mf,t, Λ) =
PA · fA(mf,t)

PI · fI(mf,t) + PA · fA(mf,t)
. (5)

4 Application to Joint Source Detection and Localization

This section presents a joint detection/localization application of the mixture model presented in
Sec. 3, that attempts to discard parts of the TF plane where the underlying spatial point-source
model does not apply.

4.1 Sector-Based Beamforming

This section briefly reminds the sector-based joint detection and localization approach described in
full details in [14]. The space around a microphone array is divided into a finite number of sectors.
Using phase information only, in a given sector, this approach detects whether the sector contains
at least one active source or zero. Let Q be the number of microphones, and P be number of pairs
of microphones (ip, jp), where 1 ≤ ip < jp ≤ Q. When all possible pairs are used, P = Q(Q − 1)/2.
Based on [14], the average “phase-only” beamforming over a given volume of space is defined as:

Eds
f,t

def
=

1

P

P
∑

p=1

Eds
f,t,p where : (6)

Eds
f,t,p

def
= 1 + Af,p(v) · cos

(

θ̂f,t,p − Bf,p(v)
)

, (7)

where Af,p and Bf,p are fixed, real-valued parameters, derived from the average theoretical cross-

correlation matrix over volume v, and θ̂f,t,p is the measured phase difference at frequency f , between
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microphones ip and jp. Af,p and Bf,p are independent of the measured data, and are computed only
once for each geometrical configuration of the array and the sectors.

Within each frequency bin f , Eq. 6 is used to determine the “most active” sector, i.e. the sector
that has maximum Eds

f,t. The activity of each sector is then defined as the total number of frequency
bins where it is dominant, in a given time frame. Although [16, 14] have shown very good overall
performance of this approach, magnitude is not used, thus leading to random decisions and suboptimal
results on silent parts of the TF plane.

4.2 Modified Sector-Based Beamforming

Global frame energy is not a good activity detector for source localization [17]. We thus attempt
here to incorporate magnitude information at the frequency bin level, into Eq. 6. Two ways are
proposed, both define magnitude-based weight functions w(m) ≥ 0 in order to activate or deactivate
each microphone pair p. Eq. 6 is replaced with:

Edsw
f,t

def
=

1

P

P
∑

p=1

w
(

m
(ip)
f,t

)

· w
(

m
(jp)
f,t

)

· Eds
f,t,p (8)

The first way uses magnitude itself: wMAG(m) = m.
The second way relies instead on the mixture model proposed in Sect. 3.2: wPOST(m) =

P (act|m, Λ). Note that in this case, any time that one microphone has its measured magnitude
m less than the automatic threshold δA, all pairs using this microphone will be zeroed in Eq. 8.

The main difference between these two ways is that the posterior-based weighting function wPOST

implicitely discards any microphone-specific gain information, thus removing the need for precise
microphone calibration. Obtaining with wPOST a detection/localization performance similar to wMAG

would therefore be an interesting achievement, with practical implications: e.g. robustness to long-
term drift of the calibrated gain, user-friendliness of a portable meeting capture system.

4.3 Experimental Results

Five real 16kHz audio sequences were taken from a meeting room audio-visual corpus available on-
line [15], recorded with a horizontal circular 8-mic array (10 cm radius) set on a table. Complete data
and description can be found at http://mmm.idiap.ch/Lathoud/05-ICASSP Total duration is 1 hour
13 minutes. 1 hour of the data has either 2 or 3 concurrent loudspeakers playing controlled, synthetic
speech. In addition, 13 min of the data contains speech from up to 3 real humans, speaking mostly
concurrently.

In a previous work using the same data [16], a threshold on “activity” (total number of active
frequency bins for a given sector, in a given time frame) was set on a reduced development set and
kept fixed on the rest of the data (test set). However, we noted that the distributions of “activity” on
truly active/inactive (sector, time frame) pairs can vary noticeably between recordings, and, for some
methods, between speech and silence periods.

Therefore, in this paper the evaluation is done in a fully unsupervised manner. This removes the
need for a development set and a fixed threshold. Each recording is processed independently, with
the following steps:

1. Compute activity, i.e. the total number of active frequency bins, for each (sector, time frame).

2. Fit two Rice distributions [18] on all activity values, irrespective of the sector and time frame.
This is done using the EM algorithm [6]. The M step is approximated with the simple and
efficient moment method proposed in [18]. After convergence, the Rice distribution with lowest
(resp. highest) average power is interpreted as “silence” (resp. “speech”).

3. Based on the desired working point (e.g. False Alarm Rate of 0.5%) and the cumulative function
of each Rice distribution, select a threshold.
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Case 0 to 3 loudspeakers 1 human 0 to 3 humans
Sequence #1 #2 #3 Average #4 #5

Target 0.5, 0 0.5, 0 0.5, 0 0.5, 0 0.5, ≈32.6 0.5, ≈32.6

Baseline 1.18, 7.53 1.62, 9.26 1.99, 5.35 1.60, 7.38 1.94, 33.7 2.98, 44.1

wMAG 1.42, 8.03 1.36, 9.83 1.08, 9.42 1.29, 9.09 1.84, 32.1 3.54, 40.5
wMAG, uncal. 1.66, 15.0 1.45, 19.5 1.44, 15.1 1.52, 16.5 1.36, 36.3 3.27, 46.5
wPOST 1.86, 1.79 1.76, 6.76 2.04, 0.85 1.89, 3.13 1.86, 32.9 4.42, 42.1
wPOST, uncal. 1.86, 1.79 1.76, 6.76 2.04, 0.85 1.89, 3.13 1.86, 32.9 4.42, 42.1

(a) Overall (FAR, FRR) in percentages.

Case 2 loudspeakers 2 humans
Sequence #1 #2 #3 Average #5

Target 2.0 2.0 2.0 2.0 ≈1.35

Baseline 1.99 1.95 1.99 1.98 1.22

wMAG 1.99 1.95 1.98 1.97 1.28
wMAG, uncal. 1.92 1.88 1.92 1.91 1.17
wPOST 2.00 1.95 2.00 1.98 1.23
wPOST, uncal. 2.00 1.95 2.00 1.98 1.23

(b) Nc, 2-source case

Case 3 loudspeakers 3 humans
Sequence #1 #2 #3 Average #5

Target 3.0 3.0 3.0 3.0 ≈2.02

Baseline 2.72 2.64 2.78 2.71 1.51

wMAG 2.70 2.62 2.62 2.65 1.63
wMAG, uncal. 2.46 2.25 2.41 2.37 1.44
wPOST 2.93 2.75 2.97 2.88 1.62
wPOST, uncal. 2.93 2.75 2.97 2.88 1.62

(c) Nc, 3-source case

Table 1: Joint detection/localization results. “Uncal.” denotes uncalibrated microphones (random
gain, uniform over [-12,+12] dB). FAR and FRR are estimated over all (sector, time frame) pairs. Nc

is the average number of active sources that are simultaneously detected & correctly located. Targets

for humans are approximate because segments annotated as “speech” contains short silences.
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Tab. 1 reports the results. 16 ms frame shift was used, with 32 ms frame length. Note that the
loudspeaker result only can be used for numerical comparisons between methods (exact target), while
results on human data are more of a sanity check (approximate target).

Overall, both types of weighting functions achieve a significant improvement over the baseline,
with decent results on human data. The wPOST approach achieves the best results in the 2- and
3-loudspeaker cases, and its advantage over wMAG in the case of uncalibrated microphones is clear.

5 Application to Noise-Robust ASR

This section presents a noise-robust ASR application of the mixture model proposed in Sec. 3, that
attempts to enhance the MFCC feature extraction process for enhanced robustness to noise. The
context is HMM/GMM speech recognition.

5.1 Baseline MFCC Extraction

12.5 ms frame shift is used, with 32 ms frame length. At each time frame t, MFCC extraction is
implemented as follows:

• Step 1: The magnitude spectrum [m1,t . . . mN,t]
T is estimated, as explained in Sect. 2.

• Step 2: Mel-filterbanks, log compression and Digital Cosine Transform (DCT) are applied to
[m1,t . . .mN,t]

T, yielding cepstral coefficients c0
t , . . . , c

12
t .

• Step 3: Mean-removed cepstral coefficients, along with their deltas and delta-deltas (39 dimen-
sions), are fed into the HMM/GMM system for training it or testing it.

5.2 Modified MFCC Extraction

Modification of Step 1: we simply propose to fit the mixture model using the EM algorithm, as
presented in Sec. 3, and use the posteriors of activity (or silence) to filter or replace the magnitude
spectrogram. Three methods are proposed:

• “POSTFILT”: In words, all information below the automatic threshold δA is dropped, and
spectral peaks are emphasized. Formally:

mPOST
f,t

def
= 1 +

(

mf,t

δA
− 1

)

· P (act |mf,t, Λ) (9)

When mf,t ≤ δA, mPOST
f,t = 1, otherwise mPOST

f,t > 1. The purpose of the division by δA is to
normalize out the possible variations in microphone gain, from one file to another.

• “POWERFILT”: It is very similar to “POSTFILT”, but spectral peak enhancement is
achieved in a different fashion:

mPOWER
f,t

def
=

(

mf,t

δA

)P (act|mf,t, Λ)

(10)

• “PSIL”: the original intent was to use [P (sil |mf,t, Λ)]−1 as a feature to replace magnitude,

given that the ratio fA(m)
fI(m) increases exponentially when m is large (spectral peaks), as discussed

in Sec. 3.2. However, the dynamic range involved is very often too large for the numerical limits
of a standard computer, so we had to compress it using a log function:

mPSIL
f,t

def
= − log [min (1 − ε, P (sil |mf,t, Λ))], (11)

ε > 0 is a constant that should be small, otherwise too much information is lost. In experiments,
we did a minor tuning on ε, trying 0.01, 0.05 and 0.1. ε = 0.05 gave the best results.
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Condition: clean Factory Noise Lynx Noise
SNR (dB) ∞ 0 6 12 0 6 12

Baseline 93.5 12.7 59.7 84.9 50.6 81.4 90.0

CJ-RASTA-PLP† 90.2 43.2 74.8 86.7 65.1 82.1 88.6
PAC† 87.8 50.8 75.5 85.9 64.5 79.4 86.0
POSTFILT 91.9 36.9 69.3 83.8 74.4 86.1 89.8
POSTFILT (block) 91.7 38.5 69.0 85.1 74.1 86.3 90.1
POWERFILT 91.7 38.1 68.8 83.0 74.7 85.8 89.7
POWERFILT (block) 91.1 43.1 70.7 84.7 75.4 86.5 90.1
PSIL 92.9 41.9 71.3 84.3 72.4 84.4 90.3

PSIL (block ) 91.7 47.9 71.7 84.4 73.5 85.1 89.7

Table 2: Word Accuracy on OGI Numbers including several existing approaches († denotes results
given in [21]), and the proposed approaches “POSTFILT”, “POWFILT” and “PSIL”. “block” denotes
block-wise processing (0.25 s, i.e. 20 frames). Bold face indicates the best non-baseline result in each
column.

5.3 Global Activity Feature

The modified MFCCs were found to be noise-robust in preliminary experiments. In addition, a “global
activity” feature Ωt ∈ [0, 1] is defined as:

Ωt
def
=

1

N

N
∑

f=1

P (act |mf,t ). (12)

This feature is a probabilistic estimate of the bandwidth occupied by activity, at a given time frame t.
After utterance-level mean and standard deviation normalization, we found that replacing c0

t with Ωt

allows for a major additional improvement in performance, especially in noisy conditions. A possible
interpretation is that after utterance-level normalization, Ωt is a reliable speech presence indicator.

5.4 Experimental Results

All experiments reported here with the methods presented in Sec. 5.2 use
[

Ωt, c
1
t , . . . , c

12
t

]T
, computed

on the filtered magnitude spectrum, along with their deltas and delta-deltas.

The baseline result is using, on the original magnitude spectrum,
[

c0
t , c

1
t , . . . , c

12
t

]

, their deltas and
delta-deltas.

The OGI Numbers database [19] is used for connected word recognition, with respectively
3233 and 1206 utterances in the training and test sets. Only “clean” conditions are used for training.
For testing, in addition to the original “clean” conditions, the non-stationary “Factory” noise and the
stationary “Lynx” noise from the NoiseX 92 database [20] were added at three levels: 0, 6 and 12 dB.

Since the proposed model is inherently stationary, higher enhancement is expected on “Lynx”
than on “Factory”. We thus ran the experiments twice: once offline, and once processing each file in
a block-wise fashion. Results are reported in Tab. 2, along with those of two state-of-the-art noise-
robust approaches. Overall, all three proposed methods behave similarly, obtaining the best results on
all “Lynx” conditions. Moreover, on “clean” conditions, they achieve significantly higher performance
than CJ-RASTA-PLP and PAC.

As expected, there is room for improvement in non-stationary conditions, although: (1) results
are encouraging, with significant improvement over the MFCC baseline, (2) the blockwise processing
hints at strong potential for further improvement.
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6 Conclusion

A simple, inexpensive and effective 2-mixture generative model was proposed to discriminate between
noise and speech in the TF plane. A key point is that the speech mixture component only models large
magnitudes. The 2-mixture model is trained on observed data in a fully unsupervised manner, using
the EM algorithm. Two applications are given that validate the model, showing major improvements.
In both cases, the key idea is to use the posterior probability of activity in the TF plane. On the
audio source detection and localization side, close-to-perfect detection of up to 3 concurrent sources
was obtained on real data. Avenues for future research include investigating alternate weighting
strategies and possible extension to fine 3-D localization of multiple sources. On the noise-robust
ASR side, a major improvement was obtained over existing approaches on both clean and stationary
noise conditions. In non-stationary noise conditions, ASR results are encouraging, and preliminary
“block-wise” results showed strong potential for improvement. Directions for future work include large
vocabulary conversational speech recognition.
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Annex A

In this Section we derive the Rayleigh magnitude-domain silence model of |FY
f | (Eq. 3) from the white

Gaussian time-domain silence model of Yt (Eq. 1).
First, let us recall a result originally shown by Rice in 1944 (for a demonstration

see [10, pp. 296-297]). Rice showed that given two zero-mean Gaussian, uncorrelated random variables

A and B with same standard deviation σ, and R
def
= |A + jB|, the R variable has a Rayleigh pdf:

fR(r) =
r

σ
e−

r2

2σ2 for r > 0 (13)

Let us now define Y1:N , as in Eq. 1, as a vector of N uncorrelated2 zero-mean Gaussian random

variable Y1:N
def
= [Y1 . . . YN ]

T
. The Discrete Fourier Transform (DFT) of Y is FY

1:N =
[

FY
1 · · · FY

N

]T

where for a given f = 1 . . . N :

FY
f

def
=

N
∑

n=1

Yne−2π(f−1) n−1

N (14)

Let Af = Re
(

FY
f

)

and Bf = Im
(

FY
f

)

. In other terms:

{

Af =
∑N

n=1 Yn cos
(

−2π(f − 1)n−1
N

)

Bf =
∑N

n=1 Yn sin
(

−2π(f − 1)n−1
N

) (15)

For f = 1 we have A1 =
∑N

n=1 Yn = 0 and B1 = 0.
For f > 1: the random variable Af (resp. Bf ) is a weighted sum of zero-mean, single Gaussian

random variables, therefore [22, p. 99] it is also a zero-mean, single Gaussian random variable with
variance:

{

σ2
Af

= σ2
∑N

n=1 cos2
(

2π (f − 1) n−1
N

)

σ2
Bf

= σ2
∑N

n=1 sin2
(

2π (f − 1) n−1
N

)

.
(16)

2Uncorrelation and independence are equivalent for Gaussian random variables.
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Given that cos2 t = 1
2 (1 + cos 2t) and sin2 t = 1

2 (1 − cos 2t) we can write:







σ2
Af

= σ2

2

(

N +
∑N

n=1 cos
(

4π (f − 1) n−1
N

)

)

σ2
Bf

= σ2

2

(

N −
∑N

n=1 cos
(

4π (f − 1) n−1
N

)

)

.
(17)

Let us now write the complex domain sum:

N
∑

n=1

ej4π(f−1) n−1

N =

N−1
∑

n=0

αn =
1 − αN

1 − α
= 0, (18)

because αN = 1, where α = ej4π
f−1

N . (Since 1 < f ≤ N , α 6= 1 and all terms in Eq. 18 are defined.)
From Eqs. 17 and 18 we conclude that:

σAf
= σBf

= σ

√

N

2
. (19)

As for the cross-correlation σAf Bf

def
=E{AfBf}, it is a weighted sum of E{YnYp} which are all zero

because of the uncorrelation hypothesis, therefore σAf Bf
= 0.

To conclude, we have shown that the random variables Af and Bf are zero-mean, uncorrelated
single Gaussian random variables of same variance, therefore the result of Rice applies:

For f > 1,
∣

∣

∣
FY

f

∣

∣

∣
has a Rayleigh pdf of parameter σ

√

N
2 .
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