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Abstract

We introduce a method for approximate smoothed inference in a class of switching linear
dynamical systems, based on a novel form of Gaussian Sum smoother. This class includes
the switching Kalman Filter and the more general case of switch transitions dependent
on the continuous latent state. The method improves on the standard Kim smoothing
approach by dispensing with one of the key approximations, thus making fuller use of the
available future information. Whilst the only central assumption required is projection to a
mixture of Gaussians, we show that an additional conditional independence assumption re-
sults in a simpler but accurate alternative. Unlike the alternative Expectation Propagation
procedure, our method consists only of a single forward and backward pass and is remi-
niscent of the standard smoothing ‘correction’ recursions in the simpler linear dynamical
system. The method is stable and compares very favourably against alternative approxi-
mations, both in cases where a single mixture component provides a good approximation,
and where a multimodal approximation of the posterior is required.

Keywords: Gaussian Sum Smoother, Switching Kalman Filter, Switching Linear Dy-
namical System, Expectation Propagation, Expectation Correction.

1. Switching Linear Dynamical System

The Linear Dynamical System (LDS) (Bar-Shalom and Li, 1998; West and Harrison, 1999)
is a key temporal model in which a latent linear process generates the observed series. For
complex time-series which are not well described globally by a single LDS, we may break
the time-series into segments, each modelled by a potentially different LDS. This is the
basis for the Switching LDS (SLDS) where, for each time t, a switch variable st ∈ 1, . . . , S
describes which of the LDSs is to be used1. The observation (or ‘visible’) vt ∈ RV is linearly
related to the hidden state ht ∈ RH by

vt = B(st)ht + ηv(st), ηv(st) ∼ N (v̄(st),Σ
v(st)) (1)

1. These systems also go under the names Jump Markov model/process, switching Kalman Filter, Switching
Linear Gaussian State Space models, Conditional Linear Gaussian Models.
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Figure 1: The independence structure of the aSLDS. Square nodes denote discrete variables,
round nodes continuous variables. In the SLDS links from h to s are not normally
considered.

where N (µ,Σ) denotes a Gaussian distribution with mean µ and covariance Σ. The tran-
sition dynamics of the continuous hidden state ht is linear,

ht = A(st)ht−1 + ηh(st), ηh(st) ∼ N
(

h̄(st),Σ
h(st)

)

(2)

The switch variable st itself is Markovian, with transition p(st|st−1).
In this article, we will consider the more general model in which the switch st is de-

pendent on both the previous st−1 and ht−1. We call this an augmented Switching Linear
Dynamical System (aSLDS), in keeping with the terminology in Lerner (2002). An equiva-
lent probabilistic model is2 (see Figure(1))

p(v1:T , h1:T , s1:T ) =

T∏

t=1

p(vt|ht, st)p(ht|ht−1, st)p(st|ht−1, st−1)

with

p(vt|ht, st) = N (v̄(st) + B(st)ht,Σ
v(st)) , p(ht|ht−1, st) = N

(

h̄(st) + A(st)ht,Σ
h(st)

)

At time t = 1, p(s1|h0, s0) simply denotes the prior p(s1), and p(h1|h0, s1) denotes p(h1|s1).
The SLDS is used in many disciplines, from econometrics to machine learning (Bar-

Shalom and Li, 1998; Ghahramani and Hinton, 1998; Lerner et al., 2000; Kitagawa, 1994;
Kim and Nelson, 1999; Pavlovic et al., 2001). The aSLDS has been used, for example,
in state-duration modelling in acoustics (Cemgil et al., 2006) and econometrics (Chib and
Dueker, 2004). See Lerner (2002) and Zoeter (2005) for recent reviews of work.

Inference

The aim of this article is to address how to perform inference in both the SLDS and aSLDS.
In particular we desire the so-called filtered estimate p(ht, st|v1:t) and the smoothed estimate
p(ht, st|v1:T ), for any 1 ≤ t ≤ T . Both filtered and smoothed inference in the SLDS is
intractable, scaling exponentially with time (Lerner, 2002). To see this informally, consider
the filtered posterior, which may be recursively computed using

p(st, ht|v1:t) =
∑

st−1

∫

ht−1

p(st, ht|st−1, ht−1, vt)p(st−1, ht−1|v1:t−1) (3)

2. The notation x1:T is shorthand for x1, . . . , xT .
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At timestep 1, p(s1, h1|v1) = p(h1|s1, v1)p(s1|v1) is an indexed set of Gaussians. At timestep
2, due to the summation over the states s1, p(s2, h2|v1:2) will be an indexed set of S Gaus-
sians; similarly at timestep 3, it will be S2 and, in general, gives rise to St Gaussians.

Our own interest in the SLDS stems from acoustic modelling, in which the time-series
consists of many thousands of points (Mesot and Barber, 2006; Cemgil et al., 2006). For
this, we require a stable and computationally feasible approximate inference, which is also
able to deal with state-spaces of high dimension, H.

2. Expectation Correction

Our approach to approximate p(ht, st|v1:T ) mirrors the Rauch-Tung-Striebel ‘correction’
smoother for the LDS (Rauch et al., 1965; Bar-Shalom and Li, 1998). Readers unfamiliar
with this approach will find a short explanation in Appendix (A), which defines the impor-
tant functions LDSFORWARD and LDSBACKWARD, which we shall make use of for inference
in the aSLDS. Our correction approach consists of a single forward pass to recursively find
the filtered posterior p(ht, st|v1:t), followed by a single backward pass to correct this into
a smoothed posterior p(ht, st|v1:T ). The forward pass we use is equivalent to standard As-
sumed Density Filtering (Minka, 2001). The main contribution of this paper is a novel
form of backward pass, based only on collapsing the smoothed posterior to a mixture of
Gaussians. However, we will discuss a simpler version of EC that makes an additional con-
ditional independence assumption. This additional assumption is motivated by simplicity
and also by the intuition that, in general, any deleterious effect on inference will be small.

2.1 Forward Pass (Filtering)

Readers familiar with Assumed Density Filtering may wish to continue directly to Section
(2.2). Our aim is to form a recursion for p(st, ht|v1:t), based on a Gaussian mixture ap-
proximation3 of p(ht|st, v1:t). Without loss of generality, we may decompose the filtered
posterior as

p(ht, st|v1:t) = p(ht|st, v1:t)p(st|v1:t) (4)

The exact representation of p(ht|st, v1:t) is a mixture with a O(St) components. We therefore
approximate this with a smaller I-component mixture

p(ht|st, v1:t) ≈
I∑

it=1

p(ht|it, st, v1:t)p(it|st, v1:t)

where p(ht|it, st, v1:t) is a Gaussian parameterised with mean4 f(it, st) and covariance F (it, st).
To find a recursion for these parameters, consider

p(ht+1|st+1, v1:t+1) =
∑

st,it

p(ht+1, st, it|st+1, v1:t+1)

=
∑

st,it

p(ht+1|st, it, st+1, v1:t+1)p(st, it|st+1, v1:t+1) (5)

3. This derivation holds also for the aSLDS, unlike that presented in Alspach and Sorenson (1972).
4. Strictly speaking, we should use the notation ft(it, st) since, for each time t, we have a set of means

indexed by it, st. This mild abuse of notation is used elsewhere in the paper.
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Figure 2: Structure of the mixture representation of the forward pass. Essentially, the for-
ward pass defines a ‘prior’ distribution at time t which contains all the information
from the variables v1:t.

Evaluating p(ht+1|st, it, st+1, v1:t+1)

We find p(ht+1|st, it, st+1, v1:t+1) from the joint distribution p(ht+1, vt+1|st, it, st+1, v1:t),
which is a Gaussian with covariance and mean elements5

Σhh = A(st+1)F (it, st)A
T(st+1) + Σh(st+1),

Σvv = B(st+1)ΣhhBT(st+1) + Σv(st+1)

Σvh = B(st+1)F (it, st)

µv = B(st+1)A(st+1)f(it, st)

µh = A(st+1)f(it, st) (6)

These results are obtained from integrating the forward dynamics, Equations (1,2) over ht,
using the results in Appendix (B). To find p(ht+1|st, it, st+1, v1:t+1) we may then condition
p(ht+1, vt+1|st, it, st+1, v1:t) on vt+1 using the results in Appendix (C).

Evaluating p(st, it|st+1, v1:t+1)

Up to a trivial normalisation constant the mixture weight in Equation (5) can be found
from the decomposition

p(st, it|st+1, v1:t+1) ∝ p(vt+1|it, st, st+1, v1:t)p(st+1|it, st, v1:t)p(it|st, v1:t)p(st|v1:t) (7)

The first factor in Equation (7), p(vt+1|it, st, st+1, v1:t) is given as a Gaussian with mean µv

and covariance Σvv , as given in Equation (6). The last two factors p(it|st, v1:t) and p(st|v1:t)
are given from the previous iteration. Finally, p(st+1|it, st, v1:t) is found from

p(st+1|it, st, v1:t) = 〈p(st+1|ht, st)〉p(ht|it,st,v1:t)
(8)

where 〈·〉p denotes expectation with respect to p. In the standard SLDS, Equation (8)
is replaced by the Markov transition p(st+1|st). In the aSLDS, however, Equation (8) will

5. We derive this for h̄t+1, v̄t+1 ≡ 0, to ease notation.
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generally need to be computed numerically. A simple approximation is to evaluate Equation
(8) at the mean value of the distribution p(ht|it, st, v1:t). To take covariance information
into account an alternative would be to draw samples from the Gaussian p(ht|it, st, v1:t) and
thus approximate the average of p(st+1|ht, st) by sampling6.

Closing the recursion

We are now in a position to calculate Equation (5). For each setting of the variable st+1,
we have a mixture of I × S Gaussians which we numerically collapse back to I Gaussians
to form

p(ht+1|st+1, v1:t+1) ≈
I∑

it+1=1

p(ht+1|it+1, st+1, v1:t+1)p(it+1|st+1, v1:t+1)

Any method of choice may be supplied to collapse a mixture to a smaller mixture. A
straightforward approach that we use in our code is based on repeatedly merging low-
weight components, as explained in Appendix (D). In this way the new mixture coefficients
p(it+1|st+1, v1:t+1), it+1 ∈ 1, . . . , I are defined.

The above completes the description of how to form a recursion for p(ht+1|st+1, v1:t+1)
in Equation (4). A recursion for the switch variable is given by

p(st+1|v1:t+1) ∝
∑

it,st

p(st+1, it, st, vt+1, v1:t)

The r.h.s. of the above equation is proportional to

∑

st,it

p(vt+1|st+1, it, st, v1:t)p(st+1|it, st, v1:t)p(it|st, v1:t)p(st|v1:t)

where all terms have been computed during the recursion for p(ht+1|st+1, v1:t+1).

The Likelihood p(v1:T )

The likelihood p(v1:T ) may be found by recursing p(v1:t+1) = p(vt+1|v1:t)p(v1:t), where

p(vt+1|vt) =
∑

it,st,st+1

p(vt+1|it, st, st+1, v1:t)p(st+1|it, st, v1:t)p(it|st, v1:t)p(st|v1:t)

In the above expression, all terms have been computed in forming the recursion for the
filtered posterior p(ht+1, st+1|v1:t+1).

The procedure for computing the filtered posterior is presented in Algorithm (1).

6. Whilst we suggest sampling as part of the aSLDS update procedure, this does not equate this with a
sequential sampling procedure, such as Particle Filtering. The sampling here is a form of exact sampling,
for which no convergence issues arise, being used only to numerically compute Equation (8).
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Algorithm 1 aSLDS Forward Pass. Approximate the filtered posterior p(st|v1:t) ≡
ρt, p(ht|st, v1:t) ≡

∑

it
wt(it, st)N (ft(it, st), Ft(it, st)). Also we return the approximate

log-likelihood log p(v1:T ). We require I1 = 1, I2 ≤ S, It ≤ S × It−1. θ(s) =
A(s), B(s),Σh(s),Σv(s), h̄(s), v̄(s).

for s1 ← 1 to S do
{f1(1, s1), F1(1, s1), p̂} = LDSFORWARD(0, 0, v1; θ(s1))
ρ1 ← p(s1)p̂

end for

for t← 2 to T do
for st ← 1 to S do

for i← 1 to It−1, and s← 1 to S do
{µx|y(i, s),Σx|y(i, s), p̂} = LDSFORWARD(ft−1(i, s), Ft−1(i, s), vt; θ(st))
p∗(st|i, s) ≡ 〈p(st|ht−1, st−1 = s)〉p(ht−1|it−1=i,st−1=s,v1:t−1)

p′(st, i, s)← wt−1(i, s)p
∗(st|i, s)ρt−1(s)p̂

end for
Collapse the It−1 × S mixture of Gaussians defined by µx|y,Σx|y, and weights

p(i, s|st) ∝ p′(st, i, s) to a Gaussian with It components, p(ht|st, v1:t) ≈
∑It

it=1 p(it|st, v1:t)p(ht|st, it, v1:t). This defines the new means ft(it, st), co-
variances Ft(it, st) and mixture weights wt(it, st) ≡ p(it|st, v1:t).

Compute ρt(st) ∝
∑

i,s p′(st, i, s)
end for
normalise ρt

L← L + log
∑

st,i,s
p′(st, i, s)

end for

2.2 Backward Pass (Smoothing)

The main contribution of this paper is to find a suitable way to ‘correct’ the filtered posterior
p(st, ht|v1:t) obtained from the forward pass into a smoothed posterior p(st, ht|v1:T ). We
initially derive this for the case of a single Gaussian representation. The extension to the
mixture case is straightforward and is given in Section (2.4). Our derivation holds for
both the SLDS and aSLDS. We approximate the smoothed posterior p(ht|st, v1:T ) by a
Gaussian with mean g(st) and covariance G(st), and our aim is to find a recursion for these
parameters. A useful starting point for a recursion is:

p(ht, st|v1:T ) =
∑

st+1

p(st+1|v1:T )p(ht|st, st+1, v1:T )p(st|st+1, v1:T )

The term p(ht|st, st+1, v1:T ) may be computed as

p(ht|st, st+1, v1:T ) =

∫

ht+1

p(ht, ht+1|st, st+1, v1:T )

=

∫

ht+1

p(ht|ht+1, st, st+1, v1:T )p(ht+1|st, st+1, v1:T )

=

∫

ht+1

p(ht|ht+1, st, st+1, v1:t)p(ht+1|st, st+1, v1:T ) (9)
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st−1 st st+1 st+2

ht−1 ht ht+1 ht+2
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Figure 3: Our backpass approximates p(ht+1|st+1, st, v1:T ) by p(ht+1|st+1, v1:T ). Motivation
for this is that st only influences ht+1 through ht. However, ht will most likely
be heavily influenced by v1:t, so that not knowing the state of st is likely to be of
secondary importance. The green (darker) node is the variable we wish to find
the posterior state of. The yellow (lighter shaded) nodes are variables in known
states, and the hashed node a variable whose state is indeed known but assumed
unknown for the approximation.

The recursion therefore requires p(ht+1|st, st+1, v1:T ), which we can write as

p(ht+1|st, st+1, v1:T ) ∝ p(ht+1|st+1, v1:T )p(st|st+1, ht+1, v1:t) (10)

The difficulty here is that the functional form of p(st|st+1, ht+1, v1:t) is not squared expo-
nential in ht+1, so that p(ht+1|st, st+1, v1:T ) will not be Gaussian. One possibility would be
to approximate the non-Gaussian p(ht+1|st, st+1, v1:T ) by a Gaussian (or mixture thereof)
by minimising the Kullback-Leilbler divergence between the two, or performing moment
matching in the case of a single Gaussian. A simpler alternative is to make the assump-
tion p(ht+1|st, st+1, v1:T ) ≈ p(ht+1|st+1, v1:T ), see Figure(3). This makes life easy since
p(ht+1|st+1, v1:T ) is already known from the previous backward recursion. Under this as-
sumption, the recursion becomes

p(ht, st|v1:T ) ≈
∑

st+1

p(st+1|v1:T )p(st|st+1, v1:T ) 〈p(ht|ht+1, st, st+1, v1:t)〉p(ht+1|st+1,v1:T ) (11)

We call the procedure resulting from the conditional independence assumption ‘standard’
EC. In Appendix (E) we show how standard EC is equivalent to a partial Discrete-Continuous
factorisation approximation. Equation (11) forms the basis of the standard EC backward
pass. How we implement the recursion for the continuous and discrete factors is detailed
below7.

7. Equation (11) has the pleasing form of an RTS backpass for the continuous part (analogous to LDS case),
and a discrete smoother (analogous to a smoother recursion for the HMM). In the standard Forward-
Backward algorithm for the HMM (Rabiner, 1989), the posterior γt ≡ p(st|v1:T ) is formed from the
product of αt ≡ p(st|v1:t) and βt ≡ p(vt+1:T |st). This approach is also analogous to EP (Heskes and
Zoeter, 2002). In the correction approach, a direct recursion for γt in terms of γt+1 and αt is formed,
without explicitly defining βt. The two approaches to inference are known as α−β and α−γ recursions.
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st st+1

it jt+1

ht ht+1

vt vt+1

Figure 4: Structure of the backward pass for mixtures. Given the smoothed information at
timestep t + 1, we need to work backwards to integrate the filtered information
from time t to ‘correct’ the filtered estimate at time t.

Evaluating 〈p(ht|ht+1, st, st+1, v1:t)〉p(ht+1|st+1,v1:T )

〈p(ht|ht+1, st, st+1, v1:t)〉p(ht+1|st+1,v1:T ) is a Gaussian in ht, whose statistics we will now com-
pute. First we find p(ht|ht+1, st, st+1, v1:t) which may be obtained from the joint distribution

p(ht, ht+1|st, st+1, v1:t) = p(ht+1|ht, st+1)p(ht|st, v1:t) (12)

which itself can be found from a forward dynamics from the filtered estimate p(ht|st, v1:t).
The statistics for the marginal p(ht|st, st+1, v1:t) are simply those of p(ht|st, v1:t), since st+1

carries no extra information about ht
8. The only remaining uncomputed statistics are the

mean of ht+1, the covariance of ht+1 and cross-variance between ht and ht+1, which are
given by

〈ht+1〉 = A(st+1)ft(st)

Σt+1,t+1 = A(st+1)Ft(st)A
T(st+1) + Σh(st+1), Σt+1,t = A(st+1)Ft(st)

Given the statistics of Equation (12), we may now condition on ht+1 to find
p(ht|ht+1, st, st+1, v1:t). Doing so effectively constitutes a reversal of the dynamics,

ht =
←−
A (st, st+1)ht+1 +←−η (st, st+1)

where
←−
A and ←−η (st, st+1) ∼ N (←−m(st, st+1),

←−
Σ(st, st+1)) are easily found using the condi-

tioned Gaussian results in Appendix (C). Averaging the above reversed dynamics over
p(ht+1|st+1, v1:T ), we find that 〈p(ht|ht+1, st, st+1, v1:t)〉p(ht+1|st+1,v1:T ) is a Gaussian with
statistics

µt =
←−
A (st, st+1)g(st+1)+

←−m(st, st+1), Σt,t =
←−
A (st, st+1)G(st+1)

←−
AT(st, st+1)+

←−
Σ(st, st+1)

These equations directly mirror the standard RTS backward pass, see Algorithm (4).

8. Integrating over ht+1 means that the information from st+1 passing through ht+1 via the term
p(ht+1|st+1, ht) vanishes. Also, since st is known, no information from st+1 passes through st to ht.

8



Evaluating p(st|st+1, v1:T )

The main departure of EC from previous methods is in treating the term

p(st|st+1, v1:T ) = 〈p(st|ht+1, st+1, v1:t)〉p(ht+1|st+1,v1:T ) (13)

The term p(st|ht+1, st+1, v1:t) is given by

p(st|ht+1, st+1, v1:t) =
p(ht+1|st+1, st, v1:t)p(st, st+1|v1:t)

∑

s′t
p(ht+1|st+1, s

′
t, v1:t)p(s′t, st+1|v1:t)

(14)

Here p(st, st+1|v1:t) = p(st+1|st, v1:t)p(st|v1:t), where p(st+1|st, v1:t) occurs in the forward
pass, Equation (8). In Equation (14), p(ht+1|st+1, st, v1:t) is found by marginalising Equa-
tion (12).

Computing the average of Equation (14) with respect to p(ht+1|st+1, v1:T ) may be
achieved by any numerical integration method desired. The simplest approximation is to
evaluate the integrand at the mean value of the averaging distribution9 p(ht+1|st+1, v1:T ).
Otherwise, sampling from the Gaussian p(ht+1|st+1, v1:T ), has the advantage that covariance
information is used10.

Closing the Recursion

We have now computed both the continuous and discrete factors in Equation (21), which we
wish to use to write the smoothed estimate in the form p(ht, st|v1:T ) = p(st|v1:T )p(ht|st, v1:T ).
The distribution p(ht|st, v1:T ) is readily obtained from the joint Equation (21) by condition-
ing on st to form the mixture

p(ht|st, v1:T ) =
∑

st+1

p(st+1|st, v1:T )p(ht|st, st+1, v1:T )

which may be collapsed to a single Gaussian (or mixture if desired). The smoothed posterior
p(st|v1:T ) is given by

p(st|v1:T ) =
∑

st+1

p(st+1|v1:T )p(st|st+1, v1:T )

=
∑

st+1

p(st+1|v1:T ) 〈p(st|ht+1, st+1, v1:t)〉p(ht+1|st+1,v1:T ) . (15)

9. Replacing ht+1 by its mean gives the simple approximation

〈p(st|ht+1, st+1, v1:t)〉p(ht+1|st+1,v1:T ) ≈
1

Z

e−
1
2

zT

t+1(st,st+1)Σ−1(st,st+1|v1:t)zt+1(st,st+1)p
detΣ(st, st+1|v1:t)

p(st|st+1, v1:t)

where zt+1(st, st+1) ≡ 〈ht+1|st+1, v1:T 〉 − 〈ht+1|st, st+1, v1:t〉 and Z ensures normalisation over st.
Σ(st, st+1|v1:t) is the filtered covariance of ht+1 given st, st+1 and the observations v1:t, which may
be taken from Σhh in Equation (6).

10. This is a form of exact sampling since drawing samples from a Gaussian is easy. This should not be
confused with meaning that this use of sampling renders EC a sequential Monte-Carlo sampling scheme.
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Numerical Stability

Numerical stability is a concern even in the LDS, and the same is to be expected for
the aSLDS. Since the standard LDS recursions LDSFORWARD and LDSBACKWARD are
embedded within the EC algorithm, we may immediately take advantage of the large body
of work on stabilizing the LDS recursions, such as the Joseph form (which is implemented
in our code for both the forward and backward passes), or the square root form (Verhaegen
and Van Dooren, 1986).

2.3 Remarks

The standard-EC Backpass procedure is closely related to Kim’s method (Kim, 1994; Kim
and Nelson, 1999). In both standard-EC and Kim’s method, the approximation
p(ht+1|st, st+1, v1:T ) ≈ p(ht+1|st+1, v1:T ), is used to form a numerically simple backward
pass. The other ‘approximation’ in EC is to numerically compute the average in Equation
(15). In Kim’s method, however, an update for the discrete variables is formed by replacing
the required term in Equation (15) by

〈p(st|ht+1, st+1, v1:t)〉p(ht+1|st+1,v1:T ) ≈ p(st|st+1, v1:t) (16)

This approximation11 decouples the discrete backward pass in Kim’s method from the con-
tinuous dynamics, since p(st|st+1, v1:t) ∝ p(st+1|st)p(st|v1:t)/p(st+1|v1:t) can be computed
simply from the filtered results alone. The fundamental difference therefore between EC
and Kim’s method is that the approximation, Equation (16), is not required by EC. The
EC backward pass therefore makes fuller use of the future information, resulting in a re-
cursion which intimately couples the continuous and discrete variables. Unlike Kim (1994)
and Lerner et al. (2000), where gt, Gt ≡ ft, Ft and only the backward pass mixture weights
are updated from the forward pass, EC actually changes the Gaussian parameters gt, Gt in
a non-trivial way. The resulting effect on the quality of the approximation can be profound,
as we will see in the experiments.

The Expectation Propagation algorithm, discussed in more detail in Section (3), makes
the central assumption, as in EC, of collapsing the posteriors to a Gaussian family (Zoeter,
2005). However, in EP, collapsing to a mixture of Gaussians is difficult – indeed, even work-
ing with a single Gaussian may be numerically unstable. In contrast, EC works largely with
moment parameterisations of Gaussians, for which relatively few numerical difficulties arise.
As explained in the derivation of Equation (11), the conditional independence assumption
p(ht+1|st, st+1, v1:T ) ≈ p(ht+1|st+1, v1:T ) is not strictly necessary in EC. We motivate it by
computational simplicity, since finding an appropriate moment matching approximation of
p(ht+1|st, st+1, v1:T ) in Equation (10) requires a relatively expensive non-Gaussian integra-
tion. The important point here is that, if we did treat p(ht+1|st, st+1, v1:T ) more correctly,
the only assumption in EC would be a collapse to a mixture of Gaussians, as in EP. As
a point of interest, as in EC, the exact computation requires only a single forward and
backward pass, whilst EP is an ‘open’ procedure requiring iteration to convergence.

11. In the HMM, this is exact, but in the SLDS the future observations carry information about st.
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Algorithm 2 aSLDS: EC Backward Pass. Approximates p(st|v1:T ) and p(ht|st, v1:T ) ≡
∑Jt

jt=1 ut(jt, st)N (gt(jt, st), Gt(jt, st)) using a mixture of Gaussians. JT = IT , Jt ≤ S × It ×
Jt+1. This routine needs the results from Algorithm (1).

GT ← FT , gT ← fT , uT ← wT

for t← T − 1 to 1 do
for s← 1 to S, s′ ← 1 to S, i← 1 to It, j′ ← 1 to Jt+1 do

(µ,Σ)(i, s, j′, s′) = LDSBACKWARD(gt+1(j
′, s′), Gt+1(j

′, s′), ft(i, s), Ft(i, s), θ(s′))
p(i, s|j′, s′) = 〈p(st = s, it = i|ht+1, st+1 = s′, jt+1 = j′, v1:t)〉p(ht+1|st+1=s′,jt+1=j′,v1:T )

p(i, s, j′, s′|v1:T )← p(st+1 = s′|v1:T )ut+1(j
′, s′)p(i, s|j′, s′)

end for
for st ← 1 to S do

Collapse the mixture defined by weights p(it = i, st+1 = s′, jt+1 = j′|st, v1T
) ∝

p(i, st, j
′, s′|v1:T ), means µ(it, st, jt+1, st+1) and covariances Σ(it, st, jt+1, st+1)

to a mixture with Jt components. This defines the new means gt(jt, st), covari-
ances Gt(jt, st) and mixture weights ut(jt, st).

p(st|v1:T )←∑

it,j′,s′
p(it, st, j

′, s′|v1:T )
end for

end for

2.4 Using Mixtures in the Backward Pass

The extension to the mixture case is straightforward, based on the representation

p(ht|st, v1:T ) ≈
J∑

jt=1

p(jt|st, v1:T )p(ht|jt, v1:T ).

Analogously to the case with a single component,

p(ht, st|v1:T ) =
∑

it,jt+1,st+1

p(st+1|v1:T )p(jt+1|st+1, v1:T )p(ht|jt+1, st+1, it, st, v1:T )

· 〈p(it, st|ht+1, jt+1, st+1, v1:t)〉p(ht+1|jt+1,st+1,v1:T )

The average in the last line of the above equation can be tackled using the same techniques as
outlined in the single Gaussian case. To approximate p(ht|jt+1, st+1, it, st, v1:T ) we consider
this as the marginal of the joint distribution

p(ht, ht+1|it, st, jt+1, st+1, v1:T ) = p(ht|ht+1, it, st, jt+1, st+1, v1:t)p(ht+1|it, st, jt+1, st+1, v1:T )

As in the case of a single mixture, the problematic term is p(ht+1|it, st, jt+1, st+1, v1:T ).
Analogously to before, we may make the assumption

p(ht+1|it, st, jt+1, st+1, v1:T ) ≈ p(ht+1|jt+1, st+1, v1:T )

meaning that information about the current switch state st, it is ignored. As in the single
component case, in principle, this assumption may be relaxed and a moment matching
approximation be performed instead. We can then form

p(ht|st, v1:T ) =
∑

it,jt+1,st+1

p(it, jt+1, st+1|st, v1:T )p(ht|it, st, jt+1, st+1, v1:T )

11



This mixture can then be collapsed to smaller mixture using any method of choice, to give

p(ht|st, v1:T ) ≈
∑

jt

p(jt|st, v1:T )p(ht|jt, v1:T )

The resulting algorithm is presented in Algorithm (2), which includes using mixtures in
both forward and backward passes.

3. Relation to other methods

Approximate inference in the SLDS has been a long-standing research topic, generating an
extensive literature, to which it is difficult to serve justice. See Lerner (2002) and Zoeter
(2005) for good reviews of previous work. A brief summary of some of the major existing
approaches follows.

Assumed Density Filtering Since the exact filtered estimate p(ht|st, v1:t) is an (exponen-
tially large) mixture of Gaussians a useful remedy is to project at each stage of the
recursion Equation (3) back to a limited set of K Gaussians. This is a Gaussian
Sum Approximation (Alspach and Sorenson, 1972), and is a form of Assumed Den-
sity Filtering (ADF) (Minka, 2001). Similarly, Generalised Pseudo Bayes2 (GPB2)
(Bar-Shalom and Li, 1998; Bar-Shalom and Fortmann, 1988) also performs filtering
by collapsing to a mixture of Gaussians. This approach to filtering is also taken in
Lerner et al. (2000) which performs the collapse by removing spatially similar Gaus-
sians, thereby retaining diversity.

Several smoothing approaches directly use the results from ADF. The most popular
is Kim’s method, which updates the filtered posterior weights to form the smoother.
As discussed in Section (2.3), Kim’s smoother corresponds to a potentially severe loss
of future information and, in general, cannot be expected to improve much on the
filtered results from ADF. The more recent work of Lerner et al. (2000) is similar
in spirit to Kim’s method, whereby the contribution from the continuous variables is
ignored in forming an approximate recursion for the smoothed p(st|v1:T ). The main
difference is that for the discrete variables, Kim’s method is based on a correction
smoother, (Rauch et al., 1965), whereas Lerner’s method uses a Belief Propagation
style backward pass (Jordan, 1998). Neither method correctly integrates information
from the continuous variables. How to form a recursion for a mixture approximation,
which does not ignore information coming through the continuous hidden variables is
a central contribution of our work.

Kitagawa (1994) used a two-filter method in which the dynamics of the chain are
reversed. Essentially, this corresponds to a Belief Propagation method which defines a
Gaussian sum approximation for p(vt+1:T |ht, st). However, since this is not a density
in ht, st, but rather a conditional likelihood, formally one cannot treat this using
density propagation methods. In Kitagawa (1994), the singularities resulting from
incorrectly treating p(vt+1:T |ht, st) as a density are heuristically finessed.
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Expectation Propagation EP (Minka, 2001) corresponds to an approximate implementation
of Belief Propagation12 (Jordan, 1998; Heskes and Zoeter, 2002). Whilst EP may be
applied to multiply-connected graphs, it does not fully exploit the numerical advan-
tages present in the singly-connected aSLDS structure. Nevertheless, EP is the most
sophisticated rival to Kim’s method and EC, since it makes the least assumptions.
For this reason, we’ll explain briefly how EP works. First, let’s simplify the notation,
and write the distribution as p =

∏

t φ (xt−1, vt−1, xt, vt), where xt ≡ ht ⊗ st, and
φ (xt−1, vt−1, xt, vt) ≡ p(xt|xt−1)p(vt|xt). EP defines ‘messages’ ρ, λ13 which contain
information from past and future observations respectively14. Explicitly, we define
ρt(xt) ∝ p(xt|v1:t) to represent knowledge about xt given all information from time 1
to t. Similarly, λt(xt) represents knowledge about state xt given all observations from
time T to time t + 1. In the sequel, we drop the time suffix for notational clarity. We
define λ(xt) implicitly through the requirement that the marginal smoothed inference
is given by

p(xt|v1:T ) ∝ ρ (xt) λ (xt) (17)

Hence λ (xt) ∝ p(vt+1:T |xt, v1:t) = p(vt+1:T |xt) and represents all future knowledge
about p(xt|v1:T ). From this

p(xt−1, xt|v1:T ) ∝ ρ (xt−1) φ (xt−1, vt−1, xt, vt)λ (xt) (18)

Taking the above equation as a starting point, we have

p(xt|v1:T ) ∝
∫

xt−1

ρ (xt−1) φ (xt−1, vt−1, xt, vt) λ (xt)

Consistency with Equation (17) requires (neglecting irrelevant scalings)

ρ (xt)λ (xt) ∝
∫

xt−1

ρ (xt−1)φ (xt−1, vt−1, xt, vt) λ (xt)

Similarly, we can integrate Equation (18) over xt to get the marginal at time xt−1

which, by consistency, should be proportional to ρ (xt−1)λ (xt−1). Hence

ρ (xt) ∝
∫

xt−1
ρ (xt−1)φ (xt−1, xt)λ (xt)

λ (xt)
, λ (xt−1) ∝

∫

xt
ρ (xt−1) φ (xt−1, xt) λ (xt)

ρ (xt−1)

(19)

where the divisions can be interpreted as preventing overcounting of messages. In an
exact implementation, the common factors in the numerator and denominator cancel.

12. Non-parametric belief propagation (Sudderth et al., 2003), which performs approximate inference in
general continuous distributions, is also related to EP applied to the aSLDS, in the sense that the
messages cannot be represented easily, and are approximated by mixtures of Gaussians.

13. These correspond to the α and β messages in the Hidden Markov Model framework (Rabiner, 1989).
14. In this Belief Propagation/EP viewpoint, the backward messages, traditionally labeled as β, correspond

to conditional likelihoods, and not distributions. In contrast, in the EC approach, which is effectively a
so-called α − γ recursion, the backward γ messages correspond to posterior distributions.
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EP addresses the fact that λ(xt) is not a distribution by using Equation (19) to form
the projection (or ‘collapse’). In the numerator, the terms

∫

xt−1
ρ (xt−1)φ (xt−1, xt)λ (xt)

and
∫

xt
ρ (xt−1)φ (xt−1, xt)λ (xt) represent p(xt|v1:T ) and p(xt−1|v1:T ). Since these

are distributions (an indexed mixture of Gaussians in the SLDS), they may be pro-
jected/collapsed to a single indexed Gaussian. The update for the ρ message is then
found from division by the λ potential, and vice versa15. To perform this division, the
potentials in the numerator and denominator are converted to their canonical repre-
sentations. To form the ρ update, the result of the division is then reconverted back to
a moment representation. The collapse is nominally made to a single Gaussian since
then explicit division is well defined. The resulting recursions, due to the approxima-
tion, are no longer independent and Heskes and Zoeter (2002) show that using more
than a single forward sweep and backward sweep often improves on the quality of the
approximation. This coupling is a departure from the exact recursions, which should
remain independent, as in our EC approach.

Applied to the SLDS, EP suffers from severe numerical instabilities (Heskes and
Zoeter, 2002) and finding a way to minimize the corresponding EP free energy in
an efficient, robust and guaranteed way remains an open problem. Damping the pa-
rameter updates is one suggested approach to heuristically improve convergence. The
source of these numerical instabilities is not well understood since, even in cases when
the posterior appears uni-modal, the method is problematic. The frequent conversions
between moment and canonical parameterisation of Gaussians are most likely at the
root of the difficulties. Our experience is that EP is currently unsuitable for large
scale time series applications.

Variational Methods Ghahramani and Hinton (1998) used a variational method which ap-
proximates the joint distribution p(h1:T , s1:T |v1:T ) rather than the marginal inference
p(ht, st|v1:T ). This is a disadvantage when compared to other methods that directly
approximate the marginal. The variational methods are nevertheless potentially at-
tractive since they are able to exploit structural properties of the distribution, such
as a factored discrete state-transition. In this article, we concentrate on the case of
a small number of states S and hence will not consider variational methods further
here16.

Sequential Monte Carlo (Particle Filtering) These methods form an approximate imple-
mentation of Equation (3), using a sum of delta functions to represent the posterior
(see, for example, Doucet et al. (2001)). Whilst potentially powerful, these non-
analytic methods typically suffer in high-dimensional hidden spaces since they are
often based on naive importance sampling, which restricts their practical use. ADF
is generally preferential to Particle Filtering since in ADF the approximation is a

15. In EP the explicit division of potentials only makes sense for members of the exponential family. More
complex methods could be envisaged in which, rather than an explicit division, the new messages are de-
fined by minimising some measure of divergence between ρ(xt)λ(xt) and

R
xt−1

ρ (xt−1)φ (xt−1, xt) λ (xt),

such as the Kullback-Leibler divergence. Whilst this is certainly feasible, it is somewhat unattractive
computationally since this would require for each timestep an expensive minimization.

16. Lerner (2002) discusses an approach in the case of a large structured discrete state transition. Related
ideas could also be used in EC.
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Figure 5: SLDS: Throughout, S = 2, V = 1 (scalar observations), T = 100, with zero
output bias. A(s) = 0.9999 ∗ orth(randn(H,H)), B(s) = randn(V,H), v̄t ≡ 0,
h̄1 = 10∗randn(H, 1), h̄t>1 = 0, Σh

1 = IH , p1 = uniform. The figures show typical
examples for each of the two problems: (a) Easy problem. H = 3, Σh(s) = IH ,
Σv(s) = 0.1IV , p(st+1|st) ∝ 1S×S + IS . (b) Hard problem. H = 30, Σv =
30IV ,Σh = 0.01IH , p(st+1|st) ∝ 1S×S.

mixture of non-trivial distributions, which is better at capturing the variability of the
posterior. In addition, for applications where an accurate computation of the likeli-
hood of the observations is required (see, for example Mesot and Barber (2006)), the
inherent stochastic nature of sampling methods is undesirable.

4. Experiments

Our toy experiments examine the stability and accuracy of EC against several other methods
on long time-series. In addition, we will compare the absolute accuracy of EC as a function
of the number of mixture components on a short time-series, where exact inference may
be explicitly evaluated. Only standard-EC is evaluated here, and evaluating EC with the
relaxed conditional independence assumption is left for future work.

Testing EC in a problem with a reasonably long temporal sequence, T , is important since
numerical stabilities may not be apparent in timeseries of just a few points. To do this,
we sequentially generate hidden and visible states from a given model. Then, given only
the parameters of the model and the visible observations (but not any of the hidden states
h1:T , s1:T ), the task is to infer p(ht|st, v1:T ) and p(st|v1:T ). Since the exact computation
is exponential in T , a formally exact evaluation of the method is infeasible. A simple
alternative is to assume that the original sample states s1:T are the ‘correct’ inferences, and
compare how our most probable posterior smoothed estimates arg maxst p(st|v1:T ) compare
with the assumed correct sample st

17. We look at two sets of experiments, one for the SLDS
and one for the aSLDS. In both cases, scalar observations are used so that the complexity
of the inference problem can be visually assessed.

17. We could also consider performance measures on the accuracy of p(ht|st, v1:T ). However, we prefer to
look at approximating arg maxst

p(st|v1:T ) since the sampled discrete states are likely to correspond to
the exact arg maxst

p(st|v1:T ).
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Figure 6: SLDS ‘Easy’ problem: The number of errors in estimating a binary switch
p(st|v1:T ) over a time series of length T = 100. Hence 50 errors corresponds to
random guessing. Plotted are histograms of the errors are over 1000 experiments.
(PF) Particle Filter. (RBPF) Rao-Blackwellised PF. (EP) Expectation Propaga-
tion. (ADFS) Assumed Density Filtering using a Single Gaussian. (KimS) Kim’s
smoother using the results from ADFS. (ECS) Expectation Correction using a
Single Gaussian (I = J = 1). (ADFM) ADF using a multiple of I = 4 Gaussians.
(KimM) Kim’s smoother using the results from ADFM. (ECM) Expectation Cor-
rection using a mixture with I = J = 4 components.
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Figure 7: SLDS ‘Hard’ problem: The number of errors in estimating a binary switch
p(st|v1:T ) over a time series of length T = 100. Hence 50 errors corresponds
to random guessing. Plotted are histograms of the errors are over 1000 experi-
ments.

SKF experiments

We chose experimental conditions that, from the viewpoint of classical signal processing,
are difficult, with changes in the switches occurring at a much higher rate than the typical
frequencies in the signal. We consider two different toy SLDS experiments. The ‘easy’
problem corresponds to a low dimensional state space, H = 3, with low visible noise.
Conversely, the ‘hard’ problem corresponds to a high dimensional state space, H = 30, and
high visible noise. See Figure(5) for full details of the experimental setup.
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Figure 8: aSLDS: Histogram of the number of errors in estimating a binary switch p(st|v1:T )
over a time series of length T = 100. Hence 50 errors corresponds to random
guessing. Plotted are histograms of the errors are over 1000 experiments. Aug-
mented SKF results. ADFM used I = 4 Gaussians, and ECM used I = J = 4
Gaussians. We used 1000 samples to approximate Equation (13).

We compared methods using a single Gaussian, and methods using multiple Gaussians,
see Figure(6) and Figure(7). For EC we use the mean approximation for the numerical
integration of Equation (13). We included the Particle Filter merely for a point of com-
parison with ADF, since they are not designed to approximate the smoothed estimate,
for which 1000 particles were used, with Kitagawa resampling, (Kitagawa, 1996). For the
Rao-Blackwellised Particle Filter (Doucet et al., 2000), 500 particles were used, with Kita-
gawa resampling. We found that EP18 was numerically unstable and often struggled to
converge. To encourage convergence, we used the damping method in Heskes and Zoeter
(2002), performing 20 iterations with a damping factor of 0.5. Nevertheless, the disappoint-
ing performance of EP is most likely due to conflicts resulting from numerical instabilities
introduced by the frequent conversions between moment and canonical representations.

The various algorithms differ widely in performance, see Figure(6) and Figure(7). Not
surprisingly, the best filtered results are given using ADF, since this is better able to repre-
sent the variance in the filtered posterior than the sampling methods. Unlike Kim’s method,
EC makes good use of the future information to clean up the filtered results considerably.
One should bear in mind that both EC and Kim’s method use the same ADF filtered re-
sults. These results show that EC may dramatically improve on Kim’s method, so that
the small amount of extra work in making a numerical approximation of p(st|st+1, v1:T ),
Equation (13), may bring significant benefits.

Augmented switching model

In Figure(8), we chose a simple two state S = 2 transition distribution p(st+1 = 1|st, ht) =
σ

(
hT

t w(st)
)
, where σ(x) ≡ 1/(1 + e−x). Some care needs to be taken to make a model so

that even exact inference would produce posterior switches close to the sampled switches.
If the switch variables st+1 can change wildly, which is possible given the above formula,

18. Generalised EP Zoeter (2005), which groups variables together improves on the results, but is still far
inferior to the EC results presented here – Onno Zoeter personal communication.
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Figure 9: (a) The multipath problem. The particle starts from (0, 0) at time t = 1. Sub-
sequently, at each time point, either the vector (10, 10) (corresponding to states
s = 1 and s = 3) or (−10, 10) (corresponding to states s = 2 and s = 4), is added
to the hidden dynamics, perturbed by a small amount of noise, Σh = 0.1. The
observations are v = h + ηv(s). For states s = 1, 2 the observation noise is small,
Σv = 0.1I, but for s = 3, 4 the noise in the horizontal direction has variance 1000.
The visible observations are given by the green ‘x’. The true hidden states are
given by the red ‘+’.(b) The exact state smoothed state posteriors pexact(st|v1:T )
computed by enumerating all paths (given by the blue dashed lines).

I 1 4 4 16 16 64 64 256 256
J 1 1 4 1 16 1 64 1 256

error 0.0989 0.0624 0.0365 0.0440 0.0130 0.0440 4.75e-4 0.0440 3.40e-8

Table 1: Errors in approximating the states for the multipath problem, see Figure(9). The
mean absolute deviation |pec(st|v1:T ) − pexact(st|v1:T )| averaged over the S = 4
states of st and over the times t = 1, . . . , 5, computed for different numbers of
mixture component in EC. The ‘mean’ integral approximation, Equation (13), is
used. The exact computation uses ST−1 = 256 mixtures.

essentially no information is left in the signal for any inference method to produce reasonable
results. We therefore set w(st) to a zero vector except for the first two components, which
are independently sampled from a zero mean Gaussian with standard deviation 5. For each
of the two switch states, s, we have a transition matrix A(s), which we set to be block
diagonal. The first 2× 2 block is set to 0.9999Rθ where Rθ is a 2× 2 rotation matrix with
angle θ chosen uniformly from 0 to 1 radians. This means that st+1 is dependent on the first
two components of ht which are rotating at a restricted rate. The remaining H − 2×H − 2
block of A(s) is chosen as (using MATLAB notation) 0.9999 ∗ orth(rand(H− 2)), which
means a scaled randomly chosen orthogonal matrix. Throughout, S = 2, V = 1, H = 30,
T = 100, with zero output bias. Using partly MATLAB notation, B(s) = randn(V,H),
v̄t ≡ 0, h̄1 = 10 ∗ randn(H, 1), h̄t>1 = 0, Σh

1 = IH , p1 = uniform. Σv = 30IV , Σh = 0.1IH .
We compare EC only against Particle Filters using 1000 particles, since other methods
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would require specialised and novel implementations. In ADFM, I = 4 Gaussians were
used, and for ECM, I = J = 4 Gaussians were used. Looking at the results in Figure(8), we
see that EC performs very well, with some improvement in using the mixture representation
I, J = 4 over a single Gaussian I = J = 1. The Particle Filter most likely failed since the
hidden dimension is too high to be explored well with only 1000 particles.

Effect of using mixtures

Our claim is that EC should cope in situations where, not just the filtered posterior
p(ht|st, v1:t), but also the smoothed posterior p(ht|st, v1:T ) is multimodal and, consequently,
cannot be well represented by a single Gaussian19. We therefore constructed an SLDS which
exhibits multimodality to see the effect of using EC with both I and J greater than 1. The
‘multipath’ scenario is described in Figure(9), where a particle traces a path through a two
dimensional space. A small number of timesteps was chosen so that the exact p(st|v1:T )
could be computed by direction enumeration. The observation of the particle is at times
extremely noisy in the horizontal direction. This induces multimodality of p(ht|st, v1:T )
since there are several paths that might plausibly have been taken to give rise to the ob-
servations. The accuracy with which EC predicts the exact smoothed posterior is given
in Table(1). For this problem we see that both the number of forward components I and
the number of backward components J affects the accuracy of the approximation, generally
with improved accuracy as the number of mixture components increases. For a ‘perfect’
approximation method, one would expect that when I = J = ST−1 = 256, then the ap-
proximation should be exact. The small error for this case in Table(1) may arise for several
reasons : the collapse to a mixture of Gaussians (since the exact smoothed posterior is not a
mixture of Gaussians), the extra independence assumption used in EC, or the simple mean
approximation used to compute Equation (13). However, at least in this case, the effect of
these assumptions on the performance is very small.

5. Discussion

Expectation Correction is a novel form of backward pass which makes less approximations
than the standard approach from Kim (1994). In Kim’s method, potentially important
future information channeled through the continuous hidden variables is lost. Standard-
EC, along with Kim’s method, makes the additional assumption p(ht+1|st, st+1, v1:T ) ≈
p(ht+1|st+1, v1:T ). However, our experience is that this assumption is rather mild, since
the state of ht+1 will be most heavily influenced by its immediate parent st+1. Knowing
v1:T should in most cases give good information about the state of ht, so that not knowing
the state st will not cost much. However, of critical importance is the numerical stability
of the method, particularly for long timeseries, where EC significantly out-benefits EP. In
tracking situations where the visible information is (temporarily) not enough to specify
accurately the hidden state, then representing the posterior p(ht|st, v1:T ) using a mixture
of Gaussians may improve results significantly. In EC, using a mixture of Gaussians20 is
fast and numerically stable, in contrast to EP. The conditional independence assumption

19. This should not be confused with the multimodality of p(ht|v1:T ) =
P

st
p(ht|st, v1:T )p(st|v1:T ).

20. Whilst we presented our work in terms of Gaussians, in principle the method should be applicable to
more complex members of the exponential family.
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of standard EC, namely p(ht+1|st, st+1, v1:T ) ≈ p(ht+1|st+1, v1:T ), may be relaxed, at the
expense of requiring a moment matching Gaussian approximation of Equation (10). Whilst
we did not do so, implementing this should not give rise to numerical instabilities since
no potential divisions are required, merely the estimation of moments. In the experiments
presented here, we did not pursue this option, since we believe that the effect of this con-
ditional independence assumption is relatively weak. If this approach were taken, then the
only remaining assumption of EC would be to project to a Gaussian mixture approximation
of the filtered and smoothed posterior. This would make the assumptions essentially the
same as that of the rival EP method. Interestingly, though, EC will only ever result in a
single forward and backward pass, unlike EP which requires multiple forward and backward
passes. This shows that the methods of computing the updates for the two approaches are
fundamentally different, with EC carefully exploiting the chain structure of the distribution.
EC has time complexity O(S2IJK) where S are the number of switch states, I and J are
the number of Gaussians used in the Forward and Backward passes, and K is the time to
compute the exact Kalman smoother for the system with a single switch state.

An interesting question is whether one could generalise EC to multiply connected struc-
tures. For cases amenable to cutset conditioning (Castillo et al., 1997), this is straightfor-
ward, though for more general cases, some care would be needed to avoid overcounting.

6. Conclusion

We have presented a method that can be used for approximate smoothed inference in an
augmented class of switching linear dynamical systems with additive Gaussian noise. Our
approximation is based on the idea that, although exact inference will consist of an exponen-
tially large number of mixture components, due to the forgetting which commonly occurs
in Markovian models, a finite number of mixture components may provide a reasonable ap-
proximation. Clearly, in systems with very long correlation times our method may require
too many mixture components to produce a satisfactory result, although we are unaware
of other techniques that would be able to cope well in that case. The main benefit of EC
over the Kim smoothing approach is that future information is more accurately dealt with
and, additionally, the method is relatively numerically stable compared to the alternative
EP procedure. The relaxed version of EC makes the same basic assumptions as EP, but
results only in a single forward and backward pass, each being based on a stable update
procedure. In a related work, we have successfully applied EC to a problem in automatic
speech recognition where we model a one dimensional speech signal using a SLDS (Mesot
and Barber, 2006). The signal consists of many thousands of timepoints, and numerical
stability is an important concern. The application also discusses parameter learning which
can be achieved using the usual EM approach. We hope that the straightforward ideas
presented here may help facilitate the practical application of dynamics hybrid networks to
machine learning and related areas.

Software for Expectation Correction for this augmented class of Switching Linear Gaussian
models is at www.idiap.ch/∼bmesot/ec
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Algorithm 3 LDS Forward Pass. Compute the filtered posteriors p(ht|v1:t) ≡ N (ft, Ft)
for a LDS with parameters θ = A,B,Σh,Σv, h̄, v̄. The log-likelihood L = log p(v1:T ) is also
returned.

F0 ← 0, f0 ← 0, L← 0
for t← 1, T do
{ft, Ft, pt} = LDSFORWARD(ft−1, Ft−1, vt; θ)
L← L + log pt

end for
function ldsforward(f, F, v; θ)

Compute joint p(ht, vt|v1:t−1):

µh ← Af + h̄, µv ← Bµh + v̄
Σhh ← AFAT + Σh, Σvv ← BΣhh + Σv, Σvh ← BΣhh

Find p(ht|v1:t) by conditioning:

f ′ ← µh + ΣT

vhΣ−1
vv (v − µv), F ′ ← Σhh − ΣT

vhΣ−1
vv Σvh

Compute p(vt|v1:t−1):

p′ ← exp
(

−1
2 (v − µv)

T Σ−1
vv (v − µv)

)

/
√

det 2πΣvv

return f ′, F ′, p′

end function
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Appendix A. Inference in the LDS

The LDS is defined by equations (1,2) in the case of a single switch S = 1. The LDS Forward
and Backward passes define the important functions LDSFORWARD and LDSBACKWARD,
which we shall make use of for inference in the aSLDS.

Forward Pass (Filtering)

The filtered posterior p(ht|v1:t) is a Gaussian which we parameterise with mean ft and co-
variance Ft. These parameters can be updated recursively using p(ht|v1:t) ∝ p(ht, vt|v1:t−1),
where the joint distribution p(ht, vt|v1:t−1) has statistics (see Appendix (B))

µh = Aft−1 + h̄, µv = Bµh + v̄

Σhh = AFt−1A
T + Σh, Σvv = BΣhh + Σv, Σvh = BΣhh

We may then find p(ht|v1:t) by conditioning p(ht, vt|v1:t−1) on vt, see Appendix (C). This
gives rise to Algorithm (3).
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Algorithm 4 LDS Backward Pass. Compute the smoothed posteriors p(ht|v1:T ). This
requires the filtered results from Algorithm (3).

GT ← FT , gT ← fT

for t← T − 1, 1 do
{gt, Gt} = LDSBACKWARD(gt+1, Gt+1, ft, Ft; θ)

end for
function ldsbackward(g,G, f, F ; θ)

µh ← Af + h̄, Σh′h′ ← AFAT + Σh, Σh′h ← AF←−
Σ ← Ft − ΣT

h′hΣ−1
h′h′Σh′h,

←−
A ← ΣT

h′hΣ−1
h′h′ ,

←−m ← f −←−Aµh

g′ ←←−Ag +←−m, G′ ←←−AG
←−
AT +

←−
Σ

return g′, G′

end function

Backward Pass

The smoothed posterior p(ht|v1:T ) ≡ N (gt, Gt) can be computed by recursively using:

p(ht|v1:T ) =

∫

ht+1

p(ht|ht+1, v1:T )p(ht+1|v1:T ) =

∫

ht+1

p(ht|ht+1, v1:t)p(ht+1|v1:T )

where p(ht|ht+1, v1:t) may be obtained from the joint distribution

p(ht, ht+1|v1:t) = p(ht+1|ht)p(ht|v1:t) (20)

which itself can be obtained by forward propagation from p(ht|v1:t). Conditioning Equation
(20) to find p(ht|ht+1, v1:t) effectively reverses the dynamics,

ht =
←−
Atht+1 +←−ηt

where
←−
At and←−η t ∼ N (←−mt,

←−
Σt) are found using the conditioned Gaussian results in Appendix

(C). Then averaging the reversed dynamics over p(ht+1|v1:T ) we find that p(ht|v1:T ) is a
Gaussian with statistics

gt =
←−
Atgt+1 +←−mt, Gt =

←−
AtGt+1

←−
At

T +
←−
Σt

This backward pass is given in Algorithm (4). For parameter learning of the A matrix,
the smoothed statistic

〈
hth

T
t+1

〉
is required. Using the above formulation, this is given by

←−
AtGt+1 +〈ht〉

〈
hT

t+1

〉
. This is much simpler than the standard expressions cited in Shumway

and Stoffer (2000) and Roweis and Ghahramani (1999).

Appendix B. Gaussian Propagation

Let y be linearly related to x through y = Mx+η, where η ∼ N (µ,Σ), and x ∼ N (µx,Σx).
Then p(y) =

∫

x
p(y|x)p(x) is a Gaussian with mean Mµx + µ and covariance MΣxMT + Σ.

Appendix C. Gaussian Conditioning

For a joint Gaussian distribution over the vectors x and y with means µx, µy and covariance
elements Σxx,Σxy,Σyy, the conditional p(x|y) is a Gaussian with mean µx+ΣxyΣ

−1
yy (y − µy)

and covariance Σxx − ΣxyΣ
−1
yy Σyx.
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Appendix D. Collapsing Gaussians

The user may provide any algorithm of their choice for collapsing a set of Gaussians to a
smaller set of Gaussians (Titterington et al., 1985). Here, to be explicit, we present a simple
one which is fast, but has the disadvantage that no spatial information about the mixture
is used.

First, we describe how to collapse a mixture to a single Gaussian: We may collapse a
mixture of Gaussians p(x) =

∑

i piN (x|µi,Σi) to a single Gaussian with mean
∑

i piµi and
covariance

∑

i pi

(
Σi + µiµ

T

i

)
− µµT.

To collapse a mixture to a K-component mixture we retain the K − 1 Gaussians with
the largest mixture weights – the remaining N −K Gaussians are simply merged to a single
Gaussian using the above method. The alternative of recursively merging the two Gaussians
with the lowest mixture weights gave similar experimental performance.

More sophisticated methods which retain some spatial information would clearly be
potentially useful. The method presented in Lerner et al. (2000) is a suitable approach
which considers removing Gaussians which are spatially similar (and not just low-weight
components), thereby retaining a sense of diversity over the possible solutions.

Appendix E. The Discrete-Continuous factorisation Viewpoint

An alternative viewpoint is to proceed analogously to the Rauch-Tung-Striebel (RTS) cor-
rection method for the LDS (Bar-Shalom and Li, 1998):

p(ht, st|v1:T ) =
∑

st+1

∫

ht+1

p(st, ht, ht+1, st+1|v1:T )

=
∑

st+1

p(st+1|v1:T )

∫

ht+1

p(ht, st|ht+1, st+1, v1:t)p(ht+1|st+1, v1:T )

=
∑

st+1

p(st+1|v1:T ) 〈p(ht|ht+1, st+1, st, v1:t)p(st|ht+1, st+1, v1:t)〉

≈
∑

st+1

p(st+1|v1:T ) 〈p(ht|ht+1, st+1, st, v1:t)〉 〈p(st|st+1, v1:T )〉
︸ ︷︷ ︸

p(st|st+1,v1:T )

(21)

where angled brackets 〈·〉 denote averages with respect to p(ht+1|st+1, v1:T ). Whilst the fac-
torised approximation in Equation (21) may seem severe, by comparing Equations (21) and
(11) we see that it is equivalent to the apparently mild assumption p(ht+1|st, st+1, v1:T ) ≈
p(ht+1|st+1, v1:T ). Hence this factorised approximation is equivalent to the ‘standard’ EC
approach in which the dependency on st is dropped.
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